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1 Executive Summary
Learning causal models involves extracting meaningful relationships and dependencies between variables from
observational or experimental data. This process often employs statistical and machine-learning techniques to infer
causal structures and identify the directionality of causal links. Understanding causal models is crucial in various
�elds, from healthcare to economics, as it allows for accurate predictions, interventions, and a deeper understanding
of complex systems.

We formulated learning of causal models as a non-convex operator-valued problem, without assumptions on
the dimension of the hidden state. This follows recent progress in system identi�cation based on an asymptotically
convergent hierarchy of convexi�cations of a non-convex operator-valued problem, which is known as non-
commutative polynomial optimization (NCPOP).

Here, we document our work on the prototype code in causal discovery at https://github.com/codiet-eu/
d32, which is based on two research papers:

• Learning of Linear Dynamical Systems as a Non-Commutative Polynomial Optimization Problem, accepted in
IEEE Transactions on Automatic Control, https://doi.org/10.1109/TAC.2023.3313351

• Joint Problems in Learning Multiple Dynamical Systems, submitted with a pre-print at https://arxiv.org/
abs/2311.02181.

capturing joint work of teams at CTU (Xiaoyu He, Petr Rysavy, Jakub Marecek) and ICL (Quan Zhou, Mengjia Niu).
The work has also bene�tted from the insights of the teams at NKUA (Dimitrios Gunopulos, Vana Kalogeraki,
Kleopatra Markou) and Technion (Shie Mannor, Mark Kozdoba). The purpose of this document is to provide further
details in terms of motivation, related work, and results on benchmarks from causal learning.
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2 Introduction
To motivate our work, let us consider an intentionally simplistic example:

Example 1. Bacteria that live in our gut help us process food including nutrient1 and nutrient1. What metabolites become
available in the blood stream (metabolome), depends on the composition of the population of bacteria (microbiome).
In many settings, we could model the metabolome as a high-dimensional unobserved state. If one wishes to study the
impact on an easily observable quantity such weight, one should like to consider confounders including height and the
amount of exercise. This relationship can be represented by a directed acyclic graph (DAG) below.

nutrient1

nutrient2

bacteria1

bacteria2

exercise

height

weight

In practice, these relationships are much more complex and our goal is to infer quantitative aspects of such
causal relationships from measurements of random variables, often available in the form of high-dimensional time
series that are not sampled uniformly. Although some of the random variables are easily observed (e.g., weight),
some others (e.g., related to the metabolome) need not be. Consider the following.

Example 2. Metabolome depends not only on the diet and microbiome, but also the microbiome is a�ected by the
metabolome and the diet. For example, inulin, a polysaccharide that is found in the cell walls of certain plants, promotes
the growth of intestinal bacteria, which modulate the intake of energy from food. In the microbiome, bacteria such
as Bacteroides ovatus and Bacteroides caccae compete for inulin and their prevalence depends on both their past
prevalence, inulin levels, and concentrations of other dietary �ber, at least up to some level of inulin.

inulin

B. ovatus

B. caccae

exercise

height

weight

Example 3. A similar interaction network can be found in relation to �-mannan. The primary degrader of �-mannan is
Roseburia intestinalis, together with others such as Bacteroides ovatus. For more details, see publication [15]. Therefore,
a diet rich in �-mannans positively in�uences the growth of these two strains. In contrast, a �ber-free diet decreases
their levels while promoting other bacteria, such as Collinsella aerofaciens. This can be crudely represented in the
following causal network.

�-mannan

R. intestinalis

B. ovatus

C. aerofaciens

Ideally, we would be able to make such causal models quantitative, not least to distinguish that �-mannan-rich
diet promotes Roseburia intestinalis, while �-mannan-poor diet may promote Collinsella aerofaciens.
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3 Related Work
First, we set our work in the context of related work, including a brief overview of traditional causal models pioneered
by Pearl [20], which yield directed acyclic graphs such as in Examples 1–3, but without the quantitative aspects, and
non-commutative polynomial optimization, pioneered by [23] and nicely surveyed by [4], which is our key technical
tool.

Traditional Causal Models Learning causal models is traditionally phrased in terms of learning structural causal
models (SCMs) or structural equations models (SEMs) including observational and intervention distributions, and
a causal graph with the aim of reasoning about counterfactual scenarios. These elements serve as a powerful
tool for understanding and formalising causal relationships in some complex systems. Current methodologies in
SCMs employ a diverse range of techniques based on constraint-, function-, gradient- and score-based methods
[20, 21, 11, 43]. With respect to methods, causal models are classi�ed as independence-based, additive-noise, and
invariant-prediction methods:

• Independence-based
Bayesian networks [20], provide a graphical representation of dependencies among variables, which aids
causal inference.

– Constraint-based
Pearl’s Causal (PC) [20] algorithm, with its stable and parallel variants, utilises conditional independence
tests to identify causal relationships within a network.

– Function-based
Direct linear non-Gaussian acyclic model (DirectLiNGAM) [31] aims to discover causal structures in the
presence of non-Gaussian and linearly mixed variables. As an improvement independent Component
Analysis-based LiNGAM (ICALiNGAM) [30] employs Independent Component Analysis to separate
independent components and infer causality.
Nonlinear optimization of causal e�ects with methods such as NOTEARS and NOTEARS LOW RANK
algorithms [44] address causal discovery in the presence of latent variables, emphasizing the importance
of sparsity in causal graphs. GraNDAG Mindspore [43] leverages MindSpore, an open-source deep
learning framework, to integrate neural networks for causal discovery.

• Instrumental-variable (IV) methods [26, 2, 1] leverage statistical modeling to represent causal dependencies
through latent variables.

• Score-based
Unlike relying on independent components, Greedy Equivalence Search (GES) [5] algorithm focus on causal
graph by iteratively adding and removing edges based on statistical tests.

• Temporal causality
Additionally, causal inference from time-series data has been addressed through Granger causality [24] and
dynamic causal modeling [10]. The challenges of confounding and selection bias are actively tackled through
propensity score matching [25].

These algorithms collectively contribute to advancing our understanding of causality in a variety of domains, o�ering
valuable tools for unraveling complex relationships in real-world data. As we point out in Section 4, these algorithms
also leave much room for improvement, and there are recent attempts [7, 19, 3] to rede�ne causality to improve
upon the traditional causal models.

Additive Noise Models As suggested above, various algorithms have been developed to infer causal structures
from observational data, each with its unique strengths and assumptions. Additive noise models (ANM, [21]) assume
that the observed variables are a�ected by independent noise, and aims to capture the true causal relationships by
testing the independence between variables and additive noise. Given a set of random variables X = (X1, ..., XN )
with index set V := {1, ..., N}, there exists a G = (V , E), where V denotes the nodes and E ✓ V 2 with (v, v) /2 E
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denotes the edges of the graph [21]. For each Vj , the set of its parents is represented as PAj . If the structural
assignments (f ) of variables are of the form

Xj := fj(PAj) +Nj , j = 1, 2, ..., N, (1)

that is, if the noise Nj is additive, the structural causal model (SCM) is called an additive noise model (ANM). ANM
thus model the true relationship between the input and the output by accounting for a nonlinear function and an
additive noise term. The independence between input and noise improves the causal interpretability of the model.
This allows for a clearer understanding of how changes in the input variable causally in�uence the output variable
without the interference of correlated noise.

Example 4. In our running Example 1, the weight grows with cube of height, decreases with the square root of the
amount of exercise and is linearly dependent on the amount of bacteria 1 and bacteria 2 in our guts. Therefore, for some
non-negative coe�cients �i, it holds that

Xweight = �height ·X
3
height + �exercise ·

p
Xexercise � �b1Xb1 + �b2Xb2 +Nweight.

The noise term includes random di�erences between humans, accounts for unknown hidden factors, and also includes
uncertainty between the measurements.

When assignments f are non-linear, let the joint probability distribution PX be induced by an ANM with (1),
where noise variables are normally distributed as Nj v N (0,�2

j ) and three times di�erentiable functions fj are
nonlinear (See Theorem 7.7 in [21]). Speci�cally, the parents PAj of Xj are denoted as Xk1 , ..., Xkl . The function
fj(xk1 , ..., xka�1 , ·, xka+1 , ..., xkl) is assumed to be non-linear for all a and some xk1 , ..., xka�1 , xka+1 , ..., xkl 2 Rl�1.
In this case, we can identify the corresponding graph G from the joint distribution PX (See proof of Corollary 31 in
[22]).

Linear Additive Noise Models In some cases, it may be preferable to assume that the functions fj in additive
noise models (1) are linear.

Example 5. If we restrict Example 1 to people of common height, the relationship between the variables is locally linear.
The same holds for the amount of exercise, assuming that we exclude outliers as professional athletes. In such a case, a
linear approximation of the formula in 4 might be useful. Then, for some non-negative coe�cients �i, it holds that

Xweight = �height ·Xheight + �exercise ·Xexercise � �b1Xb1 + �b2Xb2 +Nweight.

Under the assumption that the structural assignments (f ) are linear, noises Nj , j = 1, . . . , N are i.i.d. and follow
the same Gaussian distribution, or alternatively, noises Nj , j = 1, . . . , N are jointly independent, non-Gaussian
with strictly positive density, the ANM structure may be identi�able (cf. Proposition 7.5 & Theorem 7.6 in [21]). In
particular, the identi�ability of linear ANM is reduced to identi�ability of linear dynamical systems, where there is a
recent understanding of the sample complexity (cf. Table 1 for fully-observed systems and Table 2 more broadly).

System Identi�cation and Linear Dynamic Systems (LDS) Let us formalize the connection in more detail. Let
m be the hidden state dimension and n be the observational dimension. A linear dynamic system (LDS) L is de�ned
as a quadruple (F,G,⌃,V), where F and G are system matrices of dimension m⇥m and n⇥m, respectively.
⌃ 2 Rm⇥m and V 2 Rm⇥m are covariance matrices [42]. Hence, a single realization of the LDS of length T ,
denoted X = {x1, x2, . . . , xT } 2 Rn⇥s⇥T , is nonlinear, and is de�ned by initial conditions �0, and realization of
noises �t and !t as

�t = F�t�1 + !t, (2)
xt = G0

�t + �t, (3)

where �t 2 Rm⇥s is the vector autoregressive processes with hidden components and {!t, �t}t2{1,2,...,T} are
normally distributed process and observation noises with zero mean and covariance of ⌃ and V respectively, i.e.,
!t ⇠ N(0,⌃) 2 Rm⇥s and �t ⇠ N(0,V) 2 Rn⇥s. The transpose of G is denoted as G0. Vector xt 2 Rn⇥s serves
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Table 1: Sample complexities of fully-observed system identi�cation according to [35]. Dimension d = dx + du, i.e.,
the dimension of the state and the dimension of the control. The total number of non-zero elements is denoted
by ds. snr? denote the snr under the best possible active exploration policy. For [27], we only show the result for
⇢(A)  1. The sample complexities are given in terms of Ntot = NtrajT , i.e. the total number of samples, where T

is the horizon and Ntraj is the number of trajectories. For single trajectory data, we have Ntot = T . All bounds are
non-asymptotic and we only use the big-O notation to simplify the presentation of the bounds.

Paper Trajectory Stability Actuation Upper Bound Burn-in time Lower Bound
[6] multiple any white-noise Õ(T d log 1/�

"2snrT
) TÕ(d+ log 1/�) -

[32] single ⇢(A)  1 white-noise Õ(d log d/�
"2snr⌧

) Õ(⌧d log d/�) ⌦(d+log 1/�
"2snrT

)

[27] single any white-noise Õ(d log d/�
"2snr1

) Õ(d log d/�) -
[12] single any active - - ⌦( log 1/�

"2snr?T
)

[13] single ⇢(A) < 1 white-noise Õ(d+log 1/d
"2snrT

) Õ( d+log 1/d
(1�⇢(A))2 ) -

[37] single ⇢(A) < 1 active Õ(d+log 1/�
"2snr?⌧

) poly( 1
1�⇢(A) )Õ(d+ log 1/�) ⌦( log 1/�

"2snr?1
)

[9] single ⇢(A) < 1 white-noise Õ
� ds log d/�
"2snr1(1�⇢(A))

�
Õ
� d2

s log d/�
(1�⇢(A))4

�
-

[34] single ⇢(A)  1 any Õ(exp(d) log 1/�
"2 ) Õ(d log d/�) ⌦(exp(d) log 1/�

"2 )

as an observed output of the system. Recently, Zhou and Marecek [46] proposed to �nd the global optimum of the
objective function subject to the feasibility constraints arising from (2) and (3):

min
ft,�t,G,F,!t,�t

X

t2{1,2,...,T}

kXt � ftk
2
2 + k!tk

2
2 + k�tk

2
2, (4)

for a L2-norm k · k2. In the causality problem we are given N variables Xj 2 Rs⇥T . A natural problem is to �nd
the estimation values ft of the LDS that generated the observation data. In other words, we are interested in �nding
the optimal objective values and the residual vectors �t, !t that belong to each LDS.

Operator-Valued Trace Optimization Problems The formulation of trace optimization on DAGs typically
revolves around the unconstrained trace minimization problem, represented as:

tr min(p) := inf{tr p(X) |X 2 Sn}

where Sn is the space of n-tuple real symmetric matrices. Additionally, there exists a constrained version of
trace minimization, denoted as:

tr min(p,Q) := inf{tr p(X) |X 2 Sn, qi(X) ⌫ 0, i = 1, . . . ,m}

where qi(X) ⌫ 0 enforces positive semide�niteness constraints on polynomials in Q. The optimization problem
becomes more intricate when considering the interaction between the trace minimization objective and these
constraints.

Recent advancements in non-commutative polynomial optimization, as introduced by [46], present a compre-
hensive approach to solving trace optimization problems. This work explores a sequence of natural linear matrix
inequalities, showcasing the e�cacy of non-commutative polynomial optimization in recovering causal structures.
Furthermore, [41, 40, 39] contributes to this domain by investigating the application of the non-commutative variant
of the Term-Sparsity Exploiting Moment/Sum-of-Squares (TSSOS) hierarchy. The proposed methodology not only
demonstrates convergence but also scalability, providing a powerful tool for handling complex causal structures
inherent in trace optimization problems on DAGs.

4 Formulating Causal Learning as a NCPOP
As suggested in the Introduction, we would like to learn causal models that make it possible to capture:
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Table 2: Sample complexity and error bounds on the estimated Markov parameters for selected recent methods,
according to [35]. The parameters R  n and r are respectively the order of the system and the length of the
FIR impulse response; see [33] and [36] for more information. The error bounds are measured with respect to the
Frobenius norm.

Method Sample Complexity Error Bound (k · kF ) Additional Notes

Salar Fattahi [8] O(log2(Tp)) O

✓
p
m

⇣
log(Tnp)

N

⌘1/4
◆

Single trajectory

Oymak and Ozay [18] Õ(Tq) Õ

✓
p
m

⇣
Tq
N

⌘1/2
◆

Single trajectory

Sarkar et. al. [28] Õ(n2) Õ

✓
p
m

⇣
pn2

N

⌘1/2
◆ Single trajectory,

Suitable for systems with

unknown order

Zheng and Li [45] Õ(mT + q) Õ

✓
p
m

⇣
T 3q
N

⌘1/2
◆

Multiple trajectories,

Stable and unstable systems

Sun et. al. [33] Õ(pR) Õ

✓⇣
Rnp
N

⌘1/2
◆

Multiple trajectories,

MISO (m = 1)

Tu et. al. [36] Õ(r) Õ

⇣�
r
T

�1/2⌘ Multiple trajectories,

SISO (p = m = 1)

• quantitative aspects of causality: for example, distinguishing between bacterial strains, whose growth is
promoted by nutrients in �ber-rich diet, and strains, whose growth is inhibited by the same diet, as in Example
3

• non-linear aspects of causality: for example, up to some level of a metabolite, multiple strains of bacteria
have to compete for the metabolite, while from some level onwards, the needs can be saturated and the
growth can be constrained by other factors, as in Example 2 or Example 4

• hidden states (latent variables) of an a priori unknown dimension: for example, the role of hormones is widely
acknowledged, but their concentrations may not be available with su�cient time resolution, and it may not
be clear what hormones’ concentrations to consider a priori. At the same time, one would like to preserve as
much explainability as possible, perhaps through targeted reduction [14].

• cycles in causal relationships: for example, the metabolome depends on the diet and microbiome, but the
microbiome is a�ected by the metabolome and the diet, as in Example 2. Related cyclic relationships are
expected to involve gastrointestinal hormones [29].

• time-series aspects, such as nonanticipativity and delays: clearly, causal relationships should be established
between the cause in the past and the e�ect in the future, with some delay between the two.

• mixture-model aspects: clearly, there are variations between the metabolism in various individuals, perhaps
due to genomic di�erences. One should explore joint problems [17], where multiple causal models are learned
without the assignment of individuals to subgroups represented by the causal models given a priori.

We aim to address most of these aspects of causal learning (not necessarily in linear additive noise models)
using non-commutative polynomial optimization (NCPOP) techniques in:

1. Modeling: Express the objective function in a form suitable for NCPOP, considering the non-commutative
nature of the variables and the presence of non-convex operators.

2. NCPOP Conversion: Use NCPOP techniques to convert the non-commutative polynomial optimization
problem into a format that can be addressed numerically.

3. Solution: Apply numerical algorithms to �nd optimal solutions, taking into account the non-convexities
inherent in the problem.
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Non-Convex operator-valued problems, such as trace optimization, can be addressed using the powerful tools
developed originally for commutative polynomial optimization. The use of NCPOP o�ers a versatile approach for
handling non-commutative variables and non-convexities in optimization problems, making it applicable to a wide
range of mathematical and computational challenges.

As a simple example, we consider the iterated additive-noise model estimation via non-commutative polynomial
optimization (IANN), as presented in Algorithm 1, which learns a causal graph in the tradition of Pearl [20, 21]. Our
formulation uses equations (4) subject to (2 and 3), although one could vary those easily to allow for the non-linear
aspects.

5 Numerical Illustrations

5.1 Data Description
Synthetic Data Our synthetic data-generating procedure is implemented in Python. The observation data is
generated according to the supplied node count, edge count, and noise types. For every data set, we perform
5, 10, 15, 20, 25, 30 experiments, in which di�erent random seeds are employed to construct SCM in each iteration.

A Well-Known Dataset Three real-world datasets are provided in gCastle API [43] and each contains observational
records collected from the real-world. To be more precise, real-dataset-processed and true-graph tables are included
in each decompress package. The real-dataset-processed table includes each row counts the occurrences of the
alarms (Ai, i = 0, 1, ..., 56) in 10 minutes, and the rows are arranged in the time order, i.e., �rst 10 mins., second 10
mins., etc. The true-graph table is the underlying causal relationships, according to expert experience.

5.2 Performance
We evaluated the estimated graphs using four metrics: F1 score, False Discovery Rate (FDR), True Positive Rate (TPR),
and Structural Hamming Distance (SHD) which is the smallest number of edge additions, deletions, and reversals to
convert the estimated graph into the true DAG. The SHD takes into account both false positives and false negatives
and a lower SHD indicates a better estimate of the causal graph.

Baselines For a fair comparison, Table (3) lists run time and F1 score performance of multiple methods listed in
the Related Work section, which illustrates the various numbers of parameters of all the baselines and our method
are similar. Additionally, we experimented the same length of time window range and also applied two di�erent
random seeds to each SEM.

Comparison with ANCPOP We evaluated F1 score of both simulator data and real-world dataset, and learned
causal structure from the data. For the arti�cial data, linear and nonlinear SEM samples including Gauss, Exp,
Gumbel, Uniform, Logistic (for linear); and mlp, mim, Gaussian process, additive Gaussian process (gp-add), Quadratic
(for nonlinear) noise types simulation were estimated. To make sure the variety of the application of the ANCPOP
algorithm, we extended our result based on testing 6, 9 and 12 variables, as well as 10, 15 and 20 edges. The F1
score of applying ANCPOP to simulate samples from linear SEM with Gauss noise and nonlinear SEM with gp-add
noise are performed in Figures (1) and (2) , respectively.

While the F1 scores leave a lot of room for improvement, we stress that the dimensions of the hidden state, and
thus the system matrices are not assumed. The corresponding NCPOP is mathematically challenging, and runtime
of current methods increases exponentially. In the NPA hierarchy [16, 23], this is exponential and high, butif sparity
is exploited [41, 40, 38], the run-time stays relatively modest. We hope to improve upon the computational aspects
further.
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Algorithm 1: The procedure for causal learning.

function Independence Test (Input two-variables
�!
X,
�!
Y and residuals eNX , eNY )

if eNX??X and eNY 6??Y then return X causes Y ;
if eNX 6??X and eNY??Y then return Y causes X ;
if eNX 6??X and eNY 6??Y then return bad model;
if eNX??X and eNY??Y then return both directions possible;

end function

function NCPOP Residuals MIMIC (Input a variable X or Y )
For X (or Y , respectively), �nd error-free estimates fX

t (or fY
t ) using minimization subject to (2) and (3), to

identify system:
min

ft,�t,G,F,!t,�t

X

t2{1,2,...,T}

kXt � ftk
2
2 + k!tk

2
2 + k�tk

2
2.

eNX =
�!
Y � f

X
t (or eNY =

�!
X � f

Y
t );

return eNX or eNY ;
end function

function Casual Model Construction

. Construct adjacency matrix C by �tting and testing variables X , Y ;
while d 6= n do
Initialize the adjacency matrix: C [];
for X in measured data do

eNX  NCPOP Residuals MIMIC(X );
for Y in measured data do

eNY  NCPOP Residuals MIMIC(Y );
if Independence Test(X , Y , eNX , eNY ) = ’a causes b’ then

cab  1;
else

cab  0;
end

end
end

return Adjacency Matrix C;
. Check for Matrix Exponential Constraint, so that G is a DAG;

Calculate d = tr(eC);
end
Result: Structure causal model

end function

10



Figure 1: Performance of Samples from Gaussian Linear Noise SEM

Figure 2: Performance of Samples from gp-add Nonlinear Noise SEM
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Algorithm 2: The benchmarking procedure
function Synthetic Data Simulation (Give the number of variables(n) and edges(e), and noise distribution types of
SEM)

Generate the arti�cial true causal graph and observation data based on the SCM;
. Randomly generate an adjacency matrix C 2 Rn⇥n as a DAG;

foreach a, b 2 {1, 2, . . . , n} in C do
cab  RandomInt({0, 1});

. Check for Matrix Exponential Constraint;
Calculate d = tr(eC);

if d = n then
return Simulated adjacency matrix C;

end
end

end function

Table 3: Comparison Table between di�erent algorithms

Algorithms F1 Score Duration(s)

PC(variant=stable) 0.65 636
PC(variant=parallel) 0.6486 636
ANM 0.9 647
DirectLiNGAM 0.4651 687
ICALiNGAM 0.878 57
GES 0.5926 766
NOTEARS 0.9 993
NOTEARS Low Rank 1 582
GraNDAG 0.1818 324
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5.3 Background: Directed Acyclic Graphs (DAG)
Directed Acyclic Graphs (DAG) are graphs G = (V,E) where:

• V is the set of vertices (nodes),

• E is the set of directed edges, where each edge is an ordered pair of distinct vertices (u, v) indicating a
directed connection from vertex u to vertex v,

• The graph has the acyclic property, meaning there are no directed cycles in the graph. Formally, there is
no sequence of vertices v1, v2, . . . , vk such that (v1, v2), (v2, v3), . . . , (vk�1, vk), (vk, v1) are all edges in the
graph.

The adjacency matrix C is a matrix representation of the graph G, i.e.,

C =

2

6664

c11 · · · c1n

c21 · · · c2n
...

...
cn1 · · · cnn

3

7775
, (5)

where

cij =

(
1 if (i, j) 2 E,

0 otherwise.

According to matrix exponential constraint [44], a binary matrix C 2 {0, 1}n⇥n is a DAG if and only if

tr(eC) = n. (6)

The proof can be found in Proposition 2 of [44].
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