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1 Executive Summary
Here we describe the general background of Probabilistic Graphical Models (PGMs), in particular the most prominent
and relevant, Dynamic Bayesian Networks (DBNs), as well as their relationship to causal learning. An important
consideration is the appropriate extension of learning techniques, for which there is extensive literature in the case
of static Bayesian Networks (BNs), to apply to temporal data.

This is a methodological deliverable, the intention is to provide technical understanding as well as guide to
appropriate tools and the foundation from which to build customized tools to suit the needs of the project. By
assisting the researchers in the broader Machine Learning team within CoDiet incorporate DBNs as a fundamental
component of the statistical modeling and eventual AI recommender, we hope to provide an accessible and
interpretable mechanism to construct and assess various causal models.

In the next Section, we describe the most signi�cant technical features of DBNs, their general capabilities,
and, the focus of the research papers that compose the bulk of the deliverable, a description of algorithms
for learning DBN models from data. Finally, we present and describe our prototype code, which is hosted at
https://github.com/codiet-eu/d42.

In the subsequent Section, we describe the CoDiet data that the consortium expects to obtain. We present the
overall quantitative and qualitative aspects of the data and the procedures used to obtain it and known statistical
properties thereof. Finally we discuss general considerations from the literature as far as the application of (D)BNs
towards modeling this form of data, as well as potential approaches that combine this tool with the other consortium
methods and skills to perform the eventual causal learning.

These two Sections are followed by �ve manuscripts:

1. Learning Dynamic Bayesian Networks from Multiple Trajectory Data: First Principles and Some Numerical

Comparisons (arXiv:2406.17585)

2. ExDAG: Exact learning of DAGs (arXiv:2406.15229)

3. ExDBN: Exact learning of Dynamic Bayesian Networks (arxiv identi�er to be assigned)

4. Empirical Bayes for Dynamic Bayesian Networks With Generalized Variational Inference (arXiv:2406.17831)

5. Causal Learning in Biomedical Applications: A Benchmark (arXiv:2406.15189)

whose latest versions are also availale in arXiv, the pre-print server, at the links above. These capture the work of
the team at CTU (Vyacheslav Kungurtsev, Petr Rysavy, Fadwa Idhlacen, Jakub Marecek, Xiaoyu He, Ales Wodecki,
Pavel Rytir). The deliverable has also bene�tted from the insights of the teams at NKUA (Dimitrios Gunopulos, Vana
Kalogeraki, Kleopatra Markou) and Technion (Shie Mannor, Mark Kozdoba).

Manuscript listed as (1) above presents a broad review of approaches to learning dynamic Bayesian networks
presented in the literature, with some experimental comparisons. It is currently under submission to a journal.

Manuscript listed as (2) above presents a novel approach to learning directed acyclic graphs (DAGs) using
mixed-integer programming. The results improve upon the state-of-the-art approaches that claim to provide
maximum likelihood estimates (or global minimizers of empirical risk, or similar). It is currently under submission to
a conference.

Manuscript listed as (3) above specializes the approach of (2) to learning dynamic Bayesian networks using
mixed-integer programming. The results improve upon the state-of-the-art approaches in learning dynamic Bayesian
networks and have been demonstrated on substantial amounts of data. It is currently under submission to a
conference.

Manuscript listed as (4) demonstrates a sampling-approximation based approach to scaling the approaches (2)
and (3) to massive datasets. It is still being �nalized.

Manuscript listed as (5) above presents a synthetic benchmark we have used in testing (1 and 3 above). In
particular, we have sampled concentrations of reactants of the Krebs cycles in various resolutions, various numbers
of experiments, etc, to demonstrate that one can trade-o� length of the time series for the number of time series,
as discussed in the review using DYNOTEARS. We would now like to present trade-o� in more detail using the
recently �nished ExDBN (3 above). This is still still being �nalized.
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2 Dynamic Bayesian Networks

2.1 Introduction
To motivate our work, let us consider an intentionally simplistic example:

Example 1. Bacteria that live in our gut help us process food including nutrient1 and nutrient1. What metabolites become

available in the blood stream (metabolome), depends on the composition of the population of bacteria (microbiome).

In many settings, we could model the metabolome as a high-dimensional unobserved state. If one wishes to study the

impact on an easily observable quantity such weight, one should like to consider confounders including height and the

amount of exercise. This relationship can be represented by a directed acyclic graph (DAG) below.

nutrient1

nutrient2

bacteria1

bacteria2

exercise

height

weight

In practice, these relationships are much more complex and our goal is to infer quantitative aspects of such
causal relationships from measurements of random variables, often available in the form of high-dimensional time
series that are not sampled uniformly. Although some of the random variables are easily observed (e.g., weight),
some others (e.g., related to the metabolome) need not be. Consider the following.

Example 2. Metabolome depends not only on the diet and microbiome, but also the microbiome is a�ected by the

metabolome and the diet. For example, inulin, a polysaccharide that is found in the cell walls of certain plants, promotes

the growth of intestinal bacteria, which modulate the intake of energy from food. In the microbiome, bacteria such

as Bacteroides ovatus and Bacteroides caccae compete for inulin and their prevalence depends on both their past

prevalence, inulin levels, and concentrations of other dietary �ber, at least up to some level of inulin.

inulin

B. ovatus

B. caccae

exercise

height

weight

Example 3. A similar interaction network can be found in relation to �-mannan. The primary degrader of �-mannan is

Roseburia intestinalis, together with others such as Bacteroides ovatus. For more details, see publication [3]. Therefore,

a diet rich in �-mannans positively in�uences the growth of these two strains. In contrast, a �ber-free diet decreases

their levels while promoting other bacteria, such as Collinsella aerofaciens. This can be crudely represented in the

following causal network.

�-mannan

R. intestinalis

B. ovatus

C. aerofaciens

Ideally, we would be able to make such causal models quantitative, not least to distinguish that �-mannan-rich
diet promotes Roseburia intestinalis, while �-mannan-poor diet may promote Collinsella aerofaciens.
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2.2 Dynamic Bayesian Networks
2.2.1 Modeling and Inference

Simply speaking, DBNs model multidimensional data time-varying X(t) as though each variable Xi(t+ 1) depends
on a particular set of other variables. This will always include Markovian dependence Xj(t), sometimes include
lagged componented Xj(t� ⌧) for some ⌧ > 1, sometimes include time-independent covariates Z , and also usually
include a BN model for dependence on variables at the current time Xj(t+ 1), by a structure de�ned through a
Directed Acyclic Graph (DAG). For instance, in the example 2 above, we can consider that insulin levels, bacteria
concentrations, and weight change over time, while height remains constant. And thus the quantity weight can be
de�ned as a Markov process, that is, a stochastic process that depends on the previous time, together with any
time independent components, like,

weight(t+ 1) = �wweight(t) + �hheight+ �eexercise(t) + �oB.Ovatus(t) + �cB.Caccae(t)
B.Ovatus(t+ 1) = �

o
o
B.Ovatus(t) + �

o

i
insulin(t+ 1)

B.Caccae(t+ 1) = �
c
c
B.Caccae(t) + �

c

i
insulin(t) + �

c

i1
0
insulin(t� 1) + �

c

i2
0
insulin(t� 2)

The graph given by the �gure for Example 2 de�nes the structure that is, which variables in�uence which in the
transition, while a statistical procedure is used to estimate the weights �h, etc., in the model, to ultimately de�ne
the procedure quantitatively. We have also included more complexity as by the �exibility the DBN model permits,
by including time lagged e�ects of insulin on the Caccae bacteria concentration.

We can thus witness the two primary modeling opportunities o�ered by DBNs. For one, through both the DAG
structure at instatemporal in�uence as well as the time-lagged in�uence, we obtain a qualitative picture of the
relationship between variables. The dependence structure as to what variable depends on what and how reveals
information about the mechanism by which these variables interact. As such, DBNs are emplematic of what’s often
referred to as interpretable arti�cial intelligence (XAI). Practically, this also is related to the fact that the structure is a
central element of causal learning, that is causal inference and discovery. The conditional independence structures
that de�ne causal in�uence and the potential of do-calculus as causal interventions can be directed observed from
the structure of a DBN.

The quantitative model representation as well as the parameters associated with the model provide degrees of
freedom for a versatile framework for modeling various phenomena statistically. Due to its modularity, one can
endow domain expertise as far as the functional form of the relationship. For instance, it could be known that there
is a nonlinear crowding e�ect �c

c
(B.Caccae(t))2 in the third model. The modular representation allows the user to

choose the complexity and the form based on available data and domain expertise, adapting the tool to �t the
appropriate context.

Learning the structure and parameters of a DBN from data, however, is generally a di�cult exercise. The
structure presents signi�cance combinatorial explosion, as with each variable an exponential number of potential
graphical connections appears. We present the main signi�cant considerations as far as learning DBNs. With
appropriate scalable machine learning tools together with embedded domain expertise to learn DBNs at large
dimension size, inference on the DBN model can serve to compute the reward function for the reinforcement
learning platform.

2.2.2 Learning

Foundations The third paper below, Learning Dynamic Bayesian Networks from Data: Foundations, First Principles

and Numerical Comparisons, presents an overall comprehensive guide to the basic principles and techniques for
learning the structure and parameters of a DBN model. These are important to understand as there are important
subtleties as to how to appropriate learn the two, considering the combinatorial-continuous distinction between
structure and weights and yet their deep interplay as far as modeling is concerned. The paper describes the
statistical considerations, the various models that are available, the criteria used to learn structure, a description of
a selection of representative algorithms, and numerical comparisons.

The structure of the DBN, which is represented as a graph, can de�ne a potential causal structure. In the �rst
paper, ExDAG: Exact learning of DAGs, integer programming with branch and bound is used to �nd the exact DAG
of a BN learning problem. The work Causal Learning in Biomedical Applications presents the use of the dynotears[4]
continuous optimization algorithm for learning the structure and weights of a structural equation model of the
Krebs cycle.
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Large Dimensional Problems It can be observed from the foundations that learning a complete structure de�ning
the relationships between the variables is a challenging combinatorial problem. Furthermore, considering that
each edge in a DBN represents a potential relationship that may or may not be statistically signi�cant, adding a
requirement that the entire DAG model is statistically signi�cant to assure a degree of certainty in causal discovery
and inference, can present insurmountable computational challenges for data with more than a small number of
variables.

To this end there are three approaches, that can even be thought of as broadly speaking, towards statistical
modeling for large dimensional problems.

First, there are neural network based approaches. Utilizing the universal approximation properties of neural
networks, together with favorable scaling of the parameter space with the data volume, neural networks enable
the computational power of GPUs to be able to use large numbers of samples, tens of millions, to learn a precise
model. This itself can be used for learning a DAG structure, e.g., by reinforcement learning. This approach, however,
requires the aforementioned large quantities of data.

Second, and in particular in the �nite and especially small sample size regime, Bayesian methods become
prominent. In particular, since the sample size does not permit su�cient statistical power for bold signi�cance
claims, instead we aim to model the entire uncertainty space of the potential DBN. This presents a probabilistic
picture as to given existing background knowledge and the data, what structure and weight of relationships can be

reasonable and to what level of con�dence. Under such settings, DAG structures, which may be learned on subsets
of variables and data for computational ease, become particles, which is a stadard framework in �ltering. The
last paper presented below, Empirical Bayes for Dynamic Bayesian Networks With Generalized Variational Inference,
presents an approach to how one can initialize a set of approximate point solutions and subsequently use Bayesian
methods to sample an uncertainty quanti�ed model. Finally, as a less formalized approach, metaheuristics have
been applied to learn a DBN under large variable dimension size.

2.3 Code Package
The github repository https://github.com/codiet-eu/d42 contains a basic DBN modeling class structure for
versatile development in Python. The PGM class allows for generic graphical models, and the DynamicBayesianNet-
work general DBNs. DBNOpt and DBNBayes are used as the base for optimizers and samplers. In addition, all of
the code that generated the experiments in all of the papers appears in the repository.
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3 PGMs and CoDiet

3.1 Description of the Data
A variety of data was measured in the CoDiet project. The �rst group of inputs are obtained in the questionnaires
to the participants and describe demographic and habits. Those include sex, age, income, education level, smoking
habits, drinking habits, or medical history. Most of those are background information. The second group is formed by
slow variables that can be named as anthropometric measurements, and includes height, weight, waist circumference,
blood pressure, and body composition parameters, such as fat mass or muscle mass. This group will be accompanied
by arterial hardening and AGEs data measured by non-invasive sensors. Variables mentioned in the past paragraph
tend to in�uence health and can undergo slow changes.

Biochemical data include standard biochemistry parameters such as glucose or lipids levels. Other tests, such as
CRP and insulin level measurements, will also be done. Those data will be complemented by metabolomics data, i.e.,
both targeted and untargeted measurements of metabolites. Those data are mostly continuous, often changing in
the order of hours; however, only a limited number of samples will be available. Dietary biomarkers from urine, such
as nitrogen, potassium, and sucrose, will be measured.

The food intake of the participants will be reported. For such, two sources of data will be collected - manually
noted 24-hour dietary recall data, as well as measured by modern technologies using passive cameras. As a result,
we will have discrete variables with food intake available over the course of eight weeks.

Background data stem from genetics. The show risk of various diseases of the participants by measuring
polygenetic risk scores, DNA methylation, and miRNA data. Besides that, health is tightly bound to the microbiome.
Shotgun sequencing will be used to obtain gut metagenome.

Physical activity belongs to the group of fast variables, as it changes rapidly. We will have continuous measurements
from the GENEActiv wearables. They provide more than 150 continuous variables, including acceleration, posture,
and sleep monitoring.

3.2 Formal Representations
We describe a particular annotation of the variables that is associated with the analysis of a clinical trial. We can
divide the variables into several instrumental categories.

1. Treatment variables - These are fully observed. They may be continuous or discrete, and an impulse in
time, or, more commonly, continuous in time. They are expected to in�uence health outcomes. Confounders,
e.g., genetic, for adherence of desired treatment can play a role in causal in�uence, but would ideally involve
a distinct inquiry and analysis as the psychology of adherence can be isolated. We denote these as {U (i)(t)}
meaning the i intervention (itself possibly a vector) as parametrized by time.

2. Background Variables - These are static variables such as a person’s genome or demographic variables.
They clearly are variables that can only have a causal direction emanating from the variable. We denote
these throughout the text as {A(i)}.

3. Fast Observations - These are taken from the clinical trial and are time dependent. The blood glucose level
or the heart rate of an individual who has accepted being a subject in a clinical trial can be monitored more
or less continuously with little di�culty. Moreover, this is a quantity which is expected to have signi�cant
variability across time, both long and very short term. We denote these by {O(i)(t)}

4. Slow Observations These are meant to represent biomarkers that serve as metrics for an aggregate measure
of health. These include blood pressure, serum cholesterol, body weight, etc. The critical distinction between
Fast and Slow observations is that the slow observations are those that are expected to undergo signi�cant
change, that is at the level of sharp transitions in the state of morbidity, over longer time scales than that of
the clinical trial. That is, the results of the clinical trial are meant to only create a direction of change, that is
a di�erential with respect to the relevant time scales. This means we can safely enforce that there are no
nonlinear e�ects at the level of proximate causes. We denote these by {R(i)(t)}. The contrasting scaling to
the Fast Observations will be formalized below.

5. Latent State of Health The state of health itself is a latent variable, that is, it cannot be observed (perfectly).
However, there are clear biophysical processes involved that can be loosely de�ned as corresponding to long
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Figure 1: A Generic Model of the Variables Associated to a Clinical Trial.

term aggregate measures of the state of health of a person’s organs and cells. This is continuous, and the
dimensionality and the time scaling can be �exible as to the availability of data. We furthermore distinguish
between fast instrumental latent variables that modulate the e�ects of interventions {V (i)(t)}, their higher
level representations {W (i)(t)} and the slow moving latent generalized states of health {X(i)(t)}.

This resembles the Hidden Markov Model structure [5], and with the decisions, comes out to a Partially Observable
Markov Decision Process [2]. Generically, with the presence of continuous variables, tractable inference and learning
cannot be expected. As such, enforcing domain knowledge with structure is essential for the task.

Partially in order to mitigate some of the known disadvantages of such methods [1], we present signi�cant
inductive domain bias as to causal ordering (that is, treatments can be subject to do calculus and have weak, if any,
causes, and observations are not causes in themselves). At the same time, it explicitly encodes multiple time scaling.

3.3 Considerations for Modeling

Structural Equation Models (SEMs) were developed by econometricians to attempt to apply time-dependent ordinary
di�erential equations to �t time series data. (See Figure 1.) This presented an alternative strategy to ascertain
causation between variables when completely randomized trials were unavailable. In this paper we present a SEM
formulation for the setting described above as follows:

dV

dt
= C(A,U(t), ZC),

dW

dt
= G

⇣
A,W (t), {W (t� ⌧)}t2[0,⌧M ], {V (✏s)|t/✏

s=0},
R
t/✏

0 ✏V (✏s)ds
⌘
,

dX

dt
= F (A,X(t), {X(t� ⌧)}t2[0,⌧M ],W (t), ZF )

O(t) = Y (A,X(t), ZO),
R(t) = Q(A,X(t), ZR),

(1)

where

• Y is generally nonlinear with unstructured noise ZO ,

• We permit autoregressive e�ects through functional dependence on quantities with a time delay ⌧ up to ⌧M

In this formulation, a salient distinction from standard SEMs is the presence of two time scales. Speci�cally, note
that the general state of a person’s health, as far as the susceptibility to or even the presence of a chronic illness, is
slow to change, as the known e�ects on nutrition on these matters are expected to take place through chronic
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exposure over decades. By contrast, the period of time for any given clinical trial is in a matter of weeks. This
suggests that any inputs or interventions decided upon in the clinical trial, as far as time series data, have much
faster dynamics that the (latent) state of health.

Formally, we consider that the time scale of the data is of the order ✏. The fast quantities {U(t), V (t),W (t)} can
be said to appear in the form for the semi-�ow of X(t), that is, the operator de�ning the in�nitesimal pushforward
of the state trajectory. This does simplify the potential modeling in the sense that there would be nothing potentially
gained by considering nonlinear forms of F , as the pushforward along small time is equivalent to the temporal
linearization.

For the aggregate modeling there are two possible approaches as far as handling the challenging circumstance
of di�erent time sampling for the decisions (nutrition) and outcomes (o-mics and biomarkers)

1. Model Figure (1) as a DBN with time stamps at every observed time, that is, with missing values for all other
variables unreported at a particular time.

2. Model (1) as a DBN but with only the beginning, middle, and end as de�nitive time stamps. We use
representation learning to summarize the fast time series as a set of latent variables.
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Learning Dynamic Bayesian Networks from Data: Foundations,
First Principles and Numerical Comparisons

Vyacheslav Kungurtsev, Petr Ryšavý, Fadwa Idlahcen, Pavel Ryt́ı̌r, Aleš Wodecki

June 2024

Abstract
In this paper, we present a guide to the foundations of learning Dynamic Bayesian Net-

works (DBNs) from data in the form of multiple samples of trajectories for some length of
time. We present the formalism for a generic as well as a set of common types of DBNs
for particular variable distributions. We present the analytical form of the models, with a
comprehensive discussion on the interdependence between structure and weights in a DBN
model and their implications for learning. Next, we give a broad overview of learning meth-
ods and describe and categorize them based on the most important statistical features, and
how they treat the interplay between learning structure and weights. We give the analytical
form of the likelihood and Bayesian score functions, emphasizing the distinction from the
static case. We discuss functions used in optimization to enforce structural requirements.
We briefly discuss more complex extensions and representations. Finally we present a set
of comparisons in di↵erent settings for various distinct but representative algorithms across
the variants.

1 Introduction

In this paper we give a comprehensive presentation on the training of Dynamic Bayesian Net-
works (DBNs), including both structure and parameters, from data. DBNs present a naturally
interpretable model when it comes to understanding the precise interaction underlying the rela-
tionship between the variables. That is, the conditional independence structure defined by the
DBN provides information regarding the mechanistic procedure that defines the model. This is
also associated with the field of statistics referred to as causal learning.

There is one general survey article on DBNs we found is [59], which provides a helpful
comprehensive resource for references for DBN modeling, inference and learning. In this work
rather than seeking to provide a comprehensive literature review, instead we focus on narrating
the global landscape of the mathematical understanding of the most important considerations
as far as learning a model, including both the structure and parameters, from data.

With this understanding we are able to establish an informative taxonomy regarding meth-
ods, providing transparency in regards to the function and intention of each method. There are
important subtle distinctions as far as modeling assumptions between some di↵erent popular
methods, and their awareness is critical for best practices of DBN learning. Finally, we perform
comprehensive numerical comparisons, highlighting the particular advantages and disadvantages
of each method. We highlight that these comparisons are not meant to be exhaustive or author-
itative, but more informative and illustrative in regards to the tradeo↵s associated with learning
DBNs from data.
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We make several assumptions for this work. These are not entirely formal for the sake
of precise Theorem proving, but rather a general restriction of the data generating process of
interest, so as to highlight the most pedagogical features of DBN learning, as far as it is most
commonly done in the literature. These assumptions are restrictive as far as faithful statistical
modeling of real world phenomena. However, they tremendously simplify the learning process,
and thus allow a more comprehensible presentation of what can hope to achieve with standard
simple methods. For transparency, we present them below.

1. Causal Su�ciency There are no unobserved confounders, i.e., there is a closed system
defining the data generating process wherein all causal sources are observed. This permits
for the conditional independence structures to be reliable indicators of edge links in the
graph. This is a standard formal assumption in almost all learning algorithms for DBNs
and BNs.

2. Causal Identifiability we focus on the general case wherein the data regime permits for
potential identification of a true causal graph, generally corresponding to the number of
data samples (trajectories ⇥ time steps) some exponential factor of mangitude greater than
the number of variables (in practice this can mean 5 variables, 100 trajectories of each 50
time steps as a generic example). This permits us to focus on integer programming and
other techniques that can obtain statistically significant point estimates for exact structures
that recover a ground truth. This assumption is standard in the literature of DBN and
SEM learning, as modeling uncertainty in less favorable data regime circumstances presents
significant methodological challenges and considerations that require significantly more
advanced techniques. However, understanding the nuances of the foundations are essential
as far the proper development, implementation, and use of these techniques.

3. Fully Observed There are no hidden variables, all quantities of interest are fully observed at
every time step. Of course, graphs with hidden (latent) variables and entire structures are
instrumental for modeling in many fields. However, the inclusion of latent variables and
the required Expectation Maximization modification of the procedures described presents
technical complications that add significant additional complexity, and thus would neces-
sity a much greater length while obfuscating the message.

We make a few departures from these assumptions throughout the work, which we explicitly
indicate when they occur.

1.1 Contribution of this Work

In this work we present:

1. A thorough explicit analytical description of standard popular DBN representations and
statistical models. This includes the structure of potential dependencies of transition func-
tions of the time-dependent random variables on other variables, time independent as well
as time-dependent and in-time, Markovian one time step back, and delayed dependence.

2. Extensive commentary and analysis of learning DBNs from data from both the classical
PGM/BN perspective as well as the time series perspective. The relationship of learning
to the structure of the data, as well as high level intuition on the complex interaction of
learning the structure and the parameters is presented.
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3. A presentation of the most standard and common criteria for defining the objective or
cost of a particular DBN network structure as well as the functional forms of equations
that define that the graph satisfies the structural requirements of a DBN, in particular
acyclicity

4. Numerical results for examples of popular algorithms for learning DBNs, evaluated on a
range of criteria and variety of problems. The set of examples is not meant to be exhaustive,
nor the comparisons authoritative, but broadly illustrative of the relative advantages and
disadvantages of the di↵erent methods available.

1.2 Applications of Dynamic Bayesian Networks

The discovery of dynamic Bayesian networks has found many applications, some of which are
medicine [12, 20, 75, 8], economics [43, 44] and aviation [46, 65, 27]. The applications related to
aviation are typically related to finding casual structure in a sub-problem related to the dispatch
of flights and focused on risk mitigation. The medial applications typically focus on either the
discovery of fundamental principles related to chemical reactions, which take place in biological
organisms or the extraction of information from clinical data. In economics, it is typically of
interest to uncover relationships between the stock market and other selected factors that either
influence or are influenced by it. In the following, we give some details about chosen applications
as well as specific outcomes that the modelling using DBNs has in practice.

1.2.1 Medical Science

To highlight the importance of DBN discovery in medicine, we detail three separate applications.
The first of these focuses on the quantification of disease development [8]. Understanding the
progression of diseases is crucial in clinical medicine, as it informs the e↵ectiveness of treat-
ments. Most clinical medicine and pathology textbooks provide detailed descriptions of disease
progression and treatment responses. However, there has been limited research quantifying
these descriptions in detail. Typically, research examines the temporal aspect by describing
treatment outcomes after a certain period. A significant challenge in gaining deeper insights is
the relatively small size of clinical datasets, often comprising only a few hundred patients.

In the aforementioned contribution, a heuristic procedure is proposed for exploring and
learning non-homogeneous time dynamic Bayesian networks, aiming to balance specificity and
simplicity. The approach begins with a fully homogeneous (in time) model parts of which are
gradually replaced with sub-models which reflect the expected structure at a given level of time
delay. Furthermore, a splitting technique is applied to further improve the predictive behavior
of the model, such models are typically termed partitioned DBNs.

A heuristic method was proposed to learn the DBN on synthetic data, which has a structure
that should reflect a real data set. The numerical performance in terms of accuracy and solution
time reported is hopeful. However, the method has yet to be tested on real world datasets.

The second application is concerned with the mapping of neural pathways [20]. Identifying
functional connectivity from simultaneously recorded spike trains is crucial for understanding
how the brain processes information and instructs the body to perform complex tasks. The
study investigates the applicability of dynamic Bayesian networks (DBNs) to infer the structure
of neural circuits from observed spike trains. A probabilistic point process model was employed to
assess performance. The results confirm the utility of DBNs in inferring functional connectivity
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as well as the directions of signal flow in cortical network models. Additionally, the findings
demonstrate that DBNs outperform Granger causality when applied to populations with highly
non-linear synaptic integration mechanisms.

The third chosen application focuses on the choice of appropriate treatment regimens for
Chronic lymphocytic leukemia (CLL) [75]. This cancer is the most common blood cancer in
adults, with a varied course and response to treatment among patients. This variability com-
plicates the selection of the most appropriate treatment regimen and the prediction of disease
progression. The aforementioned paper aims to develop and validate dynamic Bayesian networks
(DBNs) to predict changes in the health status of patients with CLL and predict the progression
of the disease over time. Two DBNs, the Health Status Network (HSN) and the Treatment E↵ect
Network (TEN), were developed and implemented. Relationships linking the most important
factors influencing health status and treatment e↵ects in CLL patients were identified based on
literature data and expert knowledge. The developed networks, particularly TEN, were able to
predict the probability of survival in CLL patients, aligning with survival data collected in large
medical registries. The networks can tailor predictions by integrating prior knowledge specific
to an individual CLL patient. The proposed approach is a suitable foundation for developing
artificial intelligence systems that assist in selecting treatments, thereby positively influencing
the chances of survival for CLL patients.

1.2.2 Economics

The relationship between the stock market and national economies deepens as the market ma-
tures, highlighting the need to study their dynamic interplay. Economic indicators such as real
income and savings rates play crucial roles in influencing stock market capitalization. Macroeco-
nomic fundamentals wield considerable influence over both short and long-term periods. Some
researchers argue that finance and economic growth are causally linked, suggesting the stock
market’s potential to drive economic development. However, not all macroeconomic factors sig-
nificantly impact stock prices. Understanding the strength of association among these variables
o↵ers insights into how the stock market behaves across varying economic landscapes. Research
on the Chinese stock market examines how macroeconomic variables shape stock market indices
over time, emphasizing the enduring influence of economic fundamentals amid short-term mar-
ket fluctuations. The aforementioned interplay may be modeled by DBNs and has been detailed
in [44].

In the article and analysis of the relationship between the stock market and economic fun-
damentals using 11 selected factors is modeled using a DBN. Among these, four factors pertain
to stock market indicators, while the remaining factors focus on macroeconomic and policy con-
siderations. The first four factors reflect stock market performance, with defensive and cyclical
stocks exhibiting varying behaviors during bull and bear markets. The Stock Exchange 50 index,
comprising the 50 largest and most liquid stocks in the Shanghai Securities Market, supplements
the overall stock market observation. Additionally, the consumer stock index serves as an in-
dicator of societal consumption levels, typically rising during favorable macroeconomic periods
and declining during economic downturns.

The results on real data of the described method are mixed. The application to the Shanghai
composite market yielded some positive results in terms of the prediction of macroscopic quan-
tities, but only limited success in terms of constituent market price prediction. The modeling
of the components of the market in su�cient detail is a di�cult problem due to the numerical
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tractability being limited as the number of variables increases.

1.2.3 Aviation

The global collection of aircraft and the airspace in which they operate, is a complex system
generating a vast amount of data, making it a challenging domain to model mathematically.
This system includes critical elements such as aircraft, airports, flight crews, weather events, and
routes, each with many subcomponents. For example, aircraft have numerous subsystems and
components, each subjected to various stresses and maintenance actions, which influence their
time dynamics. Airports have multiple runways and internal logistical processes, which influence
the operational capacity. These system components interact in complex ways. For instance, each
flight corresponds to an aircraft operated by a flight crew traveling from one airport to another
via a route that may need to change due to weather. Multiple flights operate simultaneously,
requiring coordination to avoid incidents while maximizing throughput and minimizing delays.

To give an idea about a specific aviation problem that may be tackled we describe the airport
operation uncertainty characterisation, which has been developed in [27]. The model outlines
aircraft flow through the airport, emphasizing integrated airspace and airside operations. It
characterizes various operational milestones based on an aircraft flow’s Business Process Model
and Airport Collaborative Decision-Making methodology. Probability distributions for factors
influencing aircraft processes need to be estimated, along with their conditional probability
relationships. This approach results in a dynamic Bayesian network that manages uncertainties
in aircraft operating times at the airport. The nodes of the network describe various aspects
of the airport and flight operations. They cover meteorological conditions, arrival airspace
variables such as timestamps and congestion metrics, airport infrastructure, operator and flight
data, airside operational times and flight regulations, and the causes of delays.

The key outcomes of this work include the statistical characterization of processes and uncer-
tainty drivers, and a causal model for uncertainty management using a DBN. Analyzing 34,000
aircraft operations at Madrid Airport revealed that arrival delays accumulate throughout the
day due to network e↵ects, while departure delays do not follow this pattern. The major de-
lay drivers identified were the time of day, ASMA congestion, weather conditions, arrival delay
amount, process duration, runway configuration, airline business model, handling agent, air-
craft type, route origin/destination, and ATFCM regulations. Departure delays are significantly
impacted by events of longer duration, which also o↵er greater potential for recovery.

2 Background - Dynamic Bayesian Networks

We present the general, and then specific forms, of DBN models. Consider that there is an
n-dimensional stochastic process X(t). The individual random variables Xi(t) for all i 2 [nx]
can be valued as discrete, or as members of some field, such as R. In addition, there can be an
nz-dimensional random variable Z. Let us denote the generic spaces as X and Z, respectively.

The defining character of DBNs is modeling the dependence of Xi(t) on other quantities,
i.e., defining the the evolution of the stochastic process X(t) ! X(t + 1). Formally, for the
probability kernel defining the iterations of the stochastic process, the dependence must be
Markovian, that is

p(Xi(t+ 1) 2 A) = fi(X(t), Xj 6=i(t+ 1), {Xi(t� ⌧)}⌧=1,...,p, Z) (1)
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where A is some set in the Borel �-algebra of X . That is, the transition kernel can depend
on the current state of the other random variables, the values of the random variables at the
previous time, the time-independent variables Z, as well as a possibly autoregressive e↵ect
through dependence on {Xi(t� ⌧)}⌧=1,...,p.

In addition, there is the important requirement that no in-time string of dependencies forms
a cycle. This presents the necessity in introducing graph theoretical notions to precisely char-
acterize DBNs. Generically, we say a directed graph is a set of vertices V = {v1, v2, ..., vn} and
edges E = {e1, e2, ..., em}, where ej = (vj1 , vj2) denotes the existence of a directed path between
the two notes vj2 ! vj1 . We also say in this case that j2 is a parent of j1, or j2 2 dpa(j1).

The DBN model incorporates a directed acyclic graph (DAG) Ḡ = G(V(X(t�1), X(t)), Ed)[
G(V(X(t), Z), Ez) [ G(V(X(t), X(t � ⌧)), E⌧ ). The first two define connections in the model
between the temporal random variables. That is e = {V1, V2} 2 Ed with Vi 2 {{Xi}} if p(X(t+
1)i 2 A) is a function of V2 = Xj , that is j 2 dpad(i), and e = {V1, V2} 2 Es if p(Xi(t+1) 2 A) is
a function of V2 = Xj(t+1), that is 2 2 dpas(i). Finally, we also have a (non-symmetric) matrix
encoding the dependencies on the self-history ⌧ 2 dpa⌧ (i) ⇢ {1, ..., p} and the dependencies on

the static variables dpaz(i) =
n
Zj :

@fi(·)
@Zj

6= 0
o
. These, of course, can be encoded as graphs as

well.
This permits us to write (1) as,

p(Xi(t+ 1) 2 A) = f(A, {Xj(t)}j2dpad(i), {Xj(t+ 1)}j2dpas(i), {Xi(t� ⌧)}⌧2dpa⌧ (i), {Zj}j2dpaz(i))
(2)

Notice that the encoding of the explicit dependencies presents the possibility of using a common
f as opposed to one depending on the transition out-node i, in the case wherein all the variables
Xi are of the same distributional family. This eases the computation of the likelihood of the
data given the parameters and structure, etc.

We will sometimes use, for shorthand:

{Vj(t+1)}j2dpa(i) = {Xj(t)}j2dpad(i)[{Xj(t+1)}j2dpas(i)[{Xi(t�⌧)}⌧2dpa⌧ (i)[{Zj}j2dpaz(i) (3)

See Figure 1 for an illustration. In this case for i = 1, the Markovian transitions are
from itself and from X2, and there are no intra time nodes or static nodes directed to it,
and so Vdpa(1)(t) = Vdpad(1) = {X1(t � 1), X2(t � 1)}. For node 2, there are no Markovian
transitions and two intra-node dependencies, thus Vdpa(2)(t) = Vdpas(2)(t) = {X1(t), X3(t)}.
Finally, for X3(t), there are two Markovian dependencies, and a static covariate dependence.
Thus Vdpa(3)(t) = Vdpad(3)[dpaz(3)(t) = {X1(t� 1), X3(t� 1), Z}.

Now that we have established the general form of the DBN, we see that we have a fun-
damentally still very general problem to solve, in that the function f can encode any sort of
dependency on the di↵erent variables in the parent set of the note of interest. They can depend
as according to various nonlinear interactions, that can themselves embody di↵erent conditional
independence information In order to complete the model, we need to define the form of the
function f .

2.1 Simple Parametric Conditional Probability Dependency

For certain kinds of variables, it becomes both possible and prudent to use certain simple para-
metric families for defining f . In particular, for binary Bernoulli random variables correspond to
Dirichlet distributions for the prior of the weights together with using Conditional Probability
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Figure 1: A Possibl DBN Graphical Network defining the transitions of X(t)

Tables to define the form. For continuous random variables, Gaussian linear models provide a
means of computing the maximum likelihood linear parameters using covariance matrices.

A significant advantage of using parametric families arises from the closed form computation
of criteria, which permits closed form computation of the marginal posterior of a structure.
This permits structure learning algorithms to be able to score graphs o✏ine, assisting in the
search. Many score maximizing procedures such as [26, 14, 3, 2] use this approach. The score
is ultimately an integration of the posterior of the parameters in the model given the structure,
which also indicates that the sampling of the optimal parameters, once obtaining the maximum
a posteriori structure, is straightforward for these models.

In addition, one can use neural models including the Generative Flow Network approaches
as given by [17, 2]. These use a Reinforcement Learning iteration to ultimately sample from a
high scoring network as according to a defined score. Reinforcement Learning broadly, e.g., [74]
is another framework by which the structure search for these standard specific models can be
aided by neural networks.

Linear Structural Equation Models (SEMs) present an opportunity to use an adjacency ma-
trix to define both the structure and weights in a computationally advantageous form. This
highlights the correspondence between the Dynamic Systems and the graph theoretic develop-
ments in causal learning.

2.1.1 Discrete Variables

Binary Variables The case of binary random variables is wherein Xi(t) 2 B(1, pX
i
), Zj ⇠

B(1, pZ
j
), etc., that is, they are all of Bernoulli type. Empirical samples for all k 2 [K], where
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k indexes a set of sample trajectories satisfy X
(k)
i

(t), Z(k)
j
2 {0, 1} for all t, i, and j. With

this most simple scenario, the modeling flexibility as well as the nuances of structure learning
becomes a natural pedagogical start.

There is a degree of flexibility in the choice of statistical model for defining the transition
function. We will explore three options - the noisy or model, the linear logit model, and the
complete linear logit model.

The noisy or model defines the transitions as

p(Xi(t+ 1) = 0) = (1� �0)
Q

l2dpa(i)(1� �l)Vl

p(Xi(t+ 1) = 1) = 1� (1� �0)
Q

l2dpa(i)(1� �l)Vl
(4)

This model is referred to as noisy or because essentially it calculates a probabilistic perturbation
of the binary OR operation. This model presents one implementation of causal independence,
wherein the influence of each covariate is independent with respect to the others.

For the linear logit models, define the sigmoid function,

�(x) =
e
x

1 + ex

The reason the models we define next are referred to as linear is that the transition is defined
to be,

Xi(t+ 1) =
X

j2dpad(i)

�
d

jXj(t) +
X

j2dpas(i)

�
s

jXj(t+ 1) +
X

⌧2dpa⌧ (i)

�
a

⌧Xi(t� ⌧) +
X

j2dpaz(i)

�
z

jZj (5)

We shall see that this linear form is broadly common in modeling the transitions of variables in
DBN models for other variable types.

The probability kernel given by (5) is

p(Xi(t+1) = 1) = �

0

@�0 +
X

j2dpad(i)

�
d

jXj(t) +
X

j2dpas(i)

�
s

jX(t+ 1)j +
X

⌧2dpa⌧ (i)

�
a

⌧Xi(t� ⌧) +
X

j2dpaz(i)

�
z

jZj

1

A

(6)
One alternative that frequently arises in practice is the necessity to accurately model Con-

ditional Probability Dependencies (CPDs) as defined by Conditional Probability Tables (CPTs).
As an example, please see Table 1.

It is clear that the information in Table 1 cannot be modeled with a linear transition function
as in (5). In this case, if one wanted to construct such a model, one would instead have to be
able to include all of the combinations between the possible parent nodes.

Formally, a transition model could look like, for Table 1,

X1(t+ 1) = �0 + �1Z2 + �2X3(t+ 1) + �3X3(t+ 1)Z2 + �4X3(t+ 1)Z2 + �5X2(t)
+�6X2(t)Z2 + �7X2(t)X3(t+ 1) + �8X2(t)X3(t+ 1)Z2

and in the general case,

Xi(t+ 1) =
Q

j2dpad(i)

Q
k2dpas(i)

Q
⌧=1,...,p

Q
l2dpaz(i)

P
↵2(Z+

2 )
4 �

↵

i,j,k,l,⌧
(Xj(t)Xk(t+ 1)Xi(t� ⌧)Zj)

↵

(7)
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Table 1: An example of a CPT
X2(t) X3(t+ 1) Z2 X1(t+ 1)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

where the parameters are appropriately normalized. With the combinatorial explosion in this
model clearly visible, it can be seen that such circumstances present significant di�culties as
far as computing hardware expense in both processing and memory, when it comes to modeling
high dimensional datasets.

On the other hand, this structure of statistical model presents two structural conditions
denoted as local parameter independence and unrestricted multinomial distribution [61]. These
ensure that for every configuration, that is, every possible combinations of values of the parents
of a node, there is an independent parameter vector. This leads to a corresponding combina-
torial explosion of parameter vectors in the statistical model. On the other hand, however, the
analytical calculation of parameter likelihoods and posterior distributions become possible, fa-
cilitating more straightforward evaluation of scoring metrics quantifying the information quality
of an entire (D)BN. That is, the marginal likelihood of a structure can be computed without
first computing the likelihood of the weights.

Multinomial Multinomial distributions are over discrete valued random variables that can
take on multiple possible values. The distinction between a user friendly linear parameter
presentation and the expressiveness at the cost of parametric dimensionality of unrestricted
multinomial distributions becomes apparent in the increased complexity of modeling multinomial
relative to Bernoulli distributions.

Now, consider that for every i, Xi(t) 2 {u1, ..., um} some multinomial sample, with Dirichlet
sampled initial values, and always with some multinomial distribution {✓m

i
(t)}. The set of

parameters indicating the probability that Xi(t+1) = u
k given a particular configuration of the

parent nodes Vdpa(i)(t+ 1) is denoted ✓k
i,vdpa(i)

.

First, consider a linear model. Let us simplify the notation,
X

j2dpad(i)

�
d

jXj(t)+
X

j2dpas(i)

�
s

jXj(t+1)+
X

⌧2dpa⌧ (i)

�
a

⌧Xi(t�⌧)+
X

j2dpaz(i)

�
z

jZj =
X

j2dpa(i)

�jVj(t+1)

With this, the form of the transition probability is,

p(Xi(t+ 1) = u
l) =

exp
⇣
�i,0 +

P
j2dpa(i)

P
q2[m] �

l,q

i,j
1(Vj = u

q)
⌘

P
s2[m] exp

⇣
�i,0 +

P
j2dpa(i)

P
q2[m] �

s,q

i,j
1(Vj = uq)

⌘ (8)

which is a standard linear logit.
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On the other hand, with an unrestricted multinomial distribution, we can define the full
transition distribution explicitly, meaning for every possible combination of values instantiated
by a node’s parents in a given network, we define a specific probability. In this case even the
already cumbersome notation of (7) is insu�cient to present the model representation. On
the other hand, we will see that this representation eases the likelihood and Bayesian score
computations. Finally, we distinguish dpa(i) = dpat(i) [ dpaz(i) as the time-dependent and
time-independent covariates. We also distinguish the possible values of Z to be Zj 2 {1, ..., wq}

We simply denote:

p(Xi(t+ 1) = u
l|Vdpa(i)(t+ 1), ✓i) := ✓

⇠(Vdpa(i)(t+1)
i

, ⇠ 2 ⌅i, ⌅i =
Y

j2dpat(i)

Z+
m ⇥

Y

j2dpaz(i)

Z+
q (9)

That is, there is an multi-index that enumerates the entries of ⌅i for each transition i. We
can see that this presents a highly parametrized model, which will imply significant parametric
uncertainty when there are finite data samples. On the other hand, with this highly precise
model, the maximum likelihood becomes much more straightforward to compute, as well as the
Bayesian scores. Indeed, this is exactly what local parameter independence facilitates – you can
compute the likelihood by counting the instances of each transition and dividing by the count
of each predecessor configuration. On the other hand, when the total count of every possible
predecessor configuration is low, due to unfavorable sample complexity, this cannot be said to be
a high quality estimate of the actual validity of that dependence. On the other hand, by letting
these parameters take on distributions, in a Bayesian setting, the computation of a posterior for
a structure becomes easier, and the uncertainty is available by sampling the posterior, anyway.

2.1.2 Continuous Variables

Gaussian Variables A Gaussian Bayesian Network can be considered a continuous variable
equivalent to binary variables in the sense that the structure permits closed form expressions
for computing the likelihood, posterior, etc. In this case, however, the additive linear term is
standard. Formally, we assume that X(t) ⇠ N (µ;⌃). The transition function becomes:

p(Xi(t+ 1)|dpad(i) [ dpas(i) [ dpa⌧ (i) [ dpaz(i)) = N
 
�0 +

P
j2dpad(i)

�
d

j
Xj(t)

+
P

j2dpas(i)
�
s

j
Xj(t+ 1) +

P
⌧2dpa⌧ (i)⇢{1,...,p}

�
a
⌧Xi(t� ⌧) +

P
j2dpaz(i)

�
z

j
Zj ;�2

! (10)

and the result is that,

µX(t+1) = �0 + �
T
µ, �

2
X(t+1) = �

2 + �
T⌃�,

Cov [{X(t)}, {X(t+ 1)}, {X(t� ⌧)}, Z;X(t+ 1)] =
P
�j⌃i,j

Indeed in [36, Theorem 7.3-7.4] it is shown that there is a bidirectional equivalence between such
a normal joint distribution and normal transition function.

We shall see that this permits, in the temporal case, a repeated composition of the prop-
agation of the covariance with each time step, when computing the likelihood and performing
inference. This is associated with the deep theory of filtering methods, which typically studies
Gaussian DBN propagation with a simple state-observable structure.
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Exponential Family Functional Form An exponential family is defined with, recalling X
to be an abstract space for which both X(t), Z 2 X ,

1. A su�cient statistics function ⌧ : X ! RK for some K

2. A convex set of a parameter space ⇥ ⇢ Rm

3. A natural parameter function t : Rm ! RK

4. A measure A over X

The exponential family is a distribution of the form

P✓(⇠) =
1

Z(✓)
A(⇠) exp {(t(✓), ⌧(⇠)} , Z(✓) =

X

⇠

A(⇠) exp {(t(✓), ⌧(⇠))} (11)

The case of natural parameters is the most standard, and the one we have been exploring
in the formulations above, this corresponds to (t(✓), ⌧(⇠)) = (✓, ⌧(⇠)). One has to be careful,
however, in constraining the space of parameters ✓ to ones normalized, i.e.,

⇥ = {✓ 2 Rm :

Z
exp((✓, ⌧(⇠)))d⇠ <1}

Linear Structural Equation Models Consider the general case wherein the function f , as
given by (1), is given a linear parametrization with respect to continuous variables X(t), Z, as
in (5), however for continuous variables. One can then perform learning by minimizing the ap-
propriate least squares fit to the data. This is most common in the approach of Linear Structural
Equation Models, in which case a linear parametrization permits greater computational ease.

Linear Structural Equation Models (LSEMs) are the most common non-Gaussian DBN for
modeling continuous variables. With LSEMs (see, e.g. [7] for a general reference and [53] for
application to causal inference) presume a general linear structure that is associated with a
discretization of a dynamical system:

Ẋ(t) = f(X(t), Z)

with this generality, there is a degree of ambiguity in the literature, because there are a number
of ways to consider a discrete model of this.

An SEM could refer to a purely time-instant (static) model, with dependencies dpas and
dpaz only, as in [17, 45]. More recently, DBNs more broadly have become interchangeable with
SEMs, for instance, the representation in [50] has all dependencies as described here except, it
can be argued for simplicity, Z.

Nonlinear, Nonparametric and Neural Models The structure of f , or even if there is an
f at all, is of course flexible like with any statistical modeling. More complex statistical models
for the transition introduce significant additional di�culties in training, by adding nonconvexity
to the landscape and significantly expanding the degrees of freedom in the model that need to
be fit with data. Given the emphasis in this article on simple illustrative DBNs, we will but
briefly mention some examples, neither comprehensive nor authoritative.
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Broadly speaking, there are a number of popular parametric forms of nonlinear models that
can be used from time series literature, e.g. [19]. Neural networks have enabled computation-
ally intensive empirical unsupervised time series models [22, 9]. Nonlinear models in the SEM
statistical community have also been studied [42]. The work [58] uses splines to model the non-
linear relationships in the transition distributions. The work [35] uses a kernel nonparametric
regression model to learn DBNs for gene regulatory networks.

3 Learning From Multiple Trajectories

Consider that we receive N samples of trajectories T j , each with a total time of T

S = [Nn=1T n = {Z(n)
, X

(n)(0), X(n)(1), X(n)(2), ..., X(n)(T )}n=1,...,N (12)

and we are interested in fitting a DBN model to this data. This amounts to defining the specific
form of f in (1). More specifically, it amounts to identifying the parents of each Xj(t) in the
graph Ḡ, as well as specific functional form of the transition function f .

3.1 Maximum Likelihood Calculations

In reviewing the literature on learning DBNs from data, it is typical to disregard the distinction
of the trajectory sample T i and the time transition samples {X(i)(t), X(i)(t + 1)}. As far as
understanding the meta-methodological cause of this, it appears that this can be said to be due
to DBNs being considered not uniquely, but as a special kind of Bayesian Network, or as splices
of the same time series trajectory.

Consider the two methodological components thereof, time series analysis and PGMs. For
the latter, consider two popular works that are e↵ectively extensions of methods developed for
BNs extended to DBNs, the continuous reformulation of the problem into one with adjacency
matrices as decision variables, called “NOTEARS” in the static case [72] and “dynotears” [50],
as well as the use of “Generative Flow Networks”, a Reinforcement Learning-motivated sampler,
for the static case in [17] and the dynamic case in [2]. It can be seen that in all of these cases,
the likelihood is expressed as,

p
�
S|✓G, Ḡ

�
=

NQ
n=1

TQ
s=1

p

⇣
X

(n)(T � s+ 1)|✓, Z(n)
, {X(n)

j
(T � s)},

{X(n)
j

(T � s+ 1)}, {X(n)(T � s� ⌧)}⌧=1,...,p

⌘ (13)

and with the standard application of the logarithm, change into a sum, and maximization, or a
posteriori maximization through a Bayesian criterion, as the target.

And similarly, in consulting standard texts on time series analysis with detailed derivations
of Likelihood computation for various models, e.g. [19, 47], we see that in the derivations of
the likelihood, the data is considered to be a sequence of i.i.d. observations, that is, a sequence
of observations from a stochastic process {X̂(0), X̂(1), X̂(2), ..., X̂(T )}, rather than the general
form given in (12), and is fit to (13), just with a simpler expression in the sum index.

This presents the natural question as to whether or, in light of this expression’s universal use,
why, these approaches “commute”, that is, whether the equivalent expressions for the likelihood,
brought from di↵erent perspectives, are appropriately equivalent and true.

We shall see that indeed, arithmetically, the expression for the likelihood is correct for DBNs,
and so this makes the calculation of the
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3.2 Considerations from Axioms of Causal Learning

DBNs, compared to BNs, contain both time-varying as well as static variables. While the
aggregate structure is still a DAG, suggesting that formally many of the same principles regarding
inference as well as structure and weight learning in BNs carry over to DBNs, the presence of
time, especially when long trajectories are expected, adds significant complications.

Consider having a set of T sampled trajectories. On the one hand each trajectory is i.i.d.,
but above that, each time point relative to the previous presents an additional sample, with
additional information. This presents the question: how can we distinguish the amount, and
specific utility, of information gained from an additional trajectory, versus that gained from an
additional time point?

This indicates the utility of including both static Z and dynamic X variables in the model.
Instead one can consider a new trajectory as a new sample of Ẑ, which itself samples X(0) ⇠
⇡(X(0)|Z) then,X(0), X(1), ..., X(T ). As such, one has T samples in order to learn P

⇣
X(t+ 1)|X(t), Ẑ

⌘
.

However, what can be said about how informative a marginal trajectory is towards learning
P (X(t+ 1)|X(t)), that is, the marginal conditional over the population of Z?

It seems intuitive that in some way P (Ẑ) as well as ⇡(X(0)|Z) should weigh the in, where
P (Ẑ) is the population prior of P (Ẑ), corresponds to the information gained for P (X(t+ 1)|X(t)).
For continuous variables, the information depends on the cross correlation as the prior evalu-
ation is perturbed. It is clear then that information complexity is actually benefited from low
variance, or low cardinality of a discrete space, between trajectories. Thus, the DBN model is
particularly suitable for understanding long and complex time evolution of systems that do not
change much in di↵erent contexts.

Recall that causal su�ciency requires that all confounding variables be present and observed.
It is clear that di↵erent trajectories represent some distinctions in circumstance of object that
the observations are taken from. If this is a latent variable, this presents an insurmountable
probably to identification.

As far the required observations for causal identification, there exists at least one Z such
that for all trajectories Z is observed, and Z is in the parent of some X(t). We can consider
that the classic Randomized Clinical Trial is exactly that ZH 2 {0, A} and then testing for
p(X(t + 1)|X(t), Z\, ZH = 0) 6= p(X(t + 1)|X(t), Z\, ZH = A), with a null and alternative
hypothesis and Z\ as other covariates, assumed to me completely independent of ZH .

The less that Z\ mediates the transitions, the more the trajectories can be treated as inde-
pendent.

3.2.1 Conditional Independence and d(irected)-separation

Let G be a (D)BN. Let X1, . . . , Xn be the set of random variables of (D)BN. Let V,W be subsets
of {1, . . . , n}. We say that the set XV is conditional independent of XW given XZ if the following
condition holds:

P (XV |XW , XZ) = P (XV |XZ).

Independence of various sets of variables can be determined by examining d-separation (d
means directional) criterion of the (D)BN dag [13].

A (undirected) trail T = (VT , ET ) (path that does not contain any vertex twice) of G is
blocked by the set Z if 8v 2 V (G) either (i) v 2 Z \ VT , and in-degree of v is at most 1; (ii)
v /2 Z and children(v)\Z = ;, and both arcs of T connected to v are directed to v. The sets V
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and W are d-separated if any trail between V and W is blocked by the set Z. If V and W are
not d-separated, we say that they are d-connected.

The set XV is conditional independent of XW given XZ , if V and W are d-separated by Z.

3.2.2 Causal Su�ciency

We discuss various definition from [5].

Definition 3.1 We say that U = u is directly su�cient for V = v if for all c 2 R(V � (X [ Y )
and all u 2 R(U) it holds that (M,u) |= [X  x,C  c]Y = y.

Definition 3.2 We define that X = x is strongly su�cient for Y = y if there is an N = n such
that Y ✓ N and y is a restriction of n to Y and X = x is directly su�cient for N = n

Definition 3.3 We define X = x is weakly su�cient for Y = y in M if for u 2 R(U) it holds
that (M,u) |= [X  x]Y = y

3.2.3 Causal discovery and Inference

The problem of Causal discovery is to find a true graph G as the best possible explanation of the
given data. There are various causal discovery methods. Such as score-based algorithms, which
try to recover the true causal graph by finding a graph that maximize a given scoring function.
Another example are Constraints based algorithms or continuous optimization algorithms.

3.3 Closed System Graph Causal Identification Model and Likelihood Infor-
mation

In an e↵ort to establish appropriate first principles by which to study the computational and
statistical properties of joint structure-parameter learning in DBNs, we will present two defini-
tions of specific setting and problem. In this first case, we consider the more mathematically
convenient circumstance of causal su�ciency, or more broadly, a closed system whereby all of the
forces and mechanisms influencing the random variables are either observed, or are ultimately
latent variables that are completely determined by observed variables.

Closed System Graph Causal Identification Model: Assume that {X(t), Z} are ran-
dom variables whose interdependencies are fully described y some theoretical DBN defined by
a graph Ḡ and f̃ ⇡ f , there f̃ is defined as the transition function given by

p(Xi(t+ 1) 2 A) = f(X(t), Xj 6=i(t+ 1), {Xi(t� ⌧)}⌧=1,...,p, Z) + ✏

wherein ✏ is a zero mean error term. This additive noise model formulation has been leveraged
to establish results on the identifiability of the structure Ḡ [53, 32].

The statistical task is as follows:

• Frequentist: Given S, identify the correct ground truth Ḡ and a set of parameters that
maximizes the likelihood of the data given the model, ✓̂.

• Bayesian: Given S and some background prior uncertainty knowledge over the structure
⇡G(Ḡ) and parameters p(✓|Ḡ), find the a posteriori distribution over the graphs p

�
Ḡ|S

�

and, hierarchically, the weights p
�
✓|Ḡ,S

�
.
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As |S| ! 1, it is known that standard scoring and likelihood metrics enable recovery of the

ground truth structure and parameters
⇣
Ḡ, ✓Ḡ

⌘
. However, with the superexponential scaling of

possible graph structures
Finally, let us investigate in more detail the validity of the iid-inter-intra-trajectory assump-

tion implicit in the likelihood form given by (13).
Consider that we have two observed trajectories for three time steps, that is,

S =
n
X

(1)(0), X(1)(1), X(1)(2), X(1)(3), X(2)(0), X(2)(1), X(2)(2), X(2)(3)
o

We know the trajectories themselves are independent, so we can write the likelihood as a
product. The critical consideration now is the treatment of the starting value X

(i)(0). It can
be taken as an exogenous variable, which would place it in the same role as the conditioned
parameters ✓ and Ḡ. Alternatively, a prior of p

�
X(0)|✓0, ✓, Ḡ

�
would specify that a particular

DBN is associated with certain starting points. However, notice that we must add an additional
parameter ✓0, which would functionally play a similar role as simply conditioning on X

(i)(0)
itself. So, likelihood can be written to be of the form,

L
�
S|✓, Ḡ

�
= p

�
X

(1)(1), X(1)(2), X(1)(3)|X(1)(0), ✓, Ḡ
�
p
�
X

(2)(1), X(2)(2), X(2)(3)|X(2)(0), ✓, Ḡ
�

= p
�
X

(1)(2), X(1)(3)|X(1)(1), X(1)(0), ✓, Ḡ
�
p
�
X

(1)(1)|X(1)(0), ✓, Ḡ
�

⇥p
�
X

(2)(2), X(2)(3)|X(2)(1), X(2)(0), ✓, Ḡ
�
p
�
X

(2)(1)|X(2)(0), ✓, Ḡ
�

= p
�
X

(1)(3)|X(1)(2), X(1)(0), ✓, Ḡ
�
p
�
X

(1)(2)|X(1)(1), X(1)(0), ✓, Ḡ
�
p
�
X

(1)(1)|X(1)(0), ✓, Ḡ
�

⇥p
�
X

(2)(3)|X(2)(2), X(2)(0), ✓, Ḡ
�
p
�
X

(2)(2)|X(2)(1), X(2)(0), ✓, Ḡ
�
p
�
X

(2)(1)|X(2)(0), ✓, Ḡ
�

However, the latter transitions are independent given the starting point, suggesting that arith-
metically we are indeed back to (13). So this is technically correct.

In order to see why this is still consistent with the intuition that trajectories should have a
greater degree of independence, let us continue rewrite the likelihood:

L
�
S|✓, Ḡ

�
= p

�
X

(1)(3)|X(1)(2), X(1)(0), ✓, Ḡ
�
p
�
X

(1)(2)|X(1)(1), X(1)(0), ✓, Ḡ
�
p
�
X

(1)(1)|X(1)(0), ✓, Ḡ
�

⇥p
�
X

(2)(3)|X(2)(2), X(2)(0), ✓, Ḡ
�
p
�
X

(2)(2)|X(2)(1), X(2)(0), ✓, Ḡ
�
p
�
X

(2)(1)|X(2)(0), ✓, Ḡ
�

= p
�
X

(1)(3)|X(1)(2), ✓, Ḡ
�
p
�
X

(1)(2), X(1)(1)|X(1)(0), ✓, Ḡ
�

⇥p
�
X

(2)(3)|X(2)(2), ✓, Ḡ
�
p
�
X

(2)(2), X(2)(1)|X(2)(0), ✓, Ḡ
�

Continuing this through, we can see that as T !1, the expression becomes

p

⇣
X

(i)(T )|X(i)(T � 1), ✓, Ḡ
⌘
p

⇣
X

(i)(T � 1), · · · , X(i)(1)|X(i)(0), ✓, Ḡ
⌘

from which we can see the intuition of the circumstance. Asymptotically, the second term
approaches the stationary distribution, and the independence assumption becomes valid. Oth-
erwise, we can consider that for T much longer than the mixing time, this assumption is also
valid for most of the transitions. However, otherwise we can see that:

1. The larger the measure of the support, and the more distinct the starting points X
(i)(0)

are from each other, the longer it can take for the stochastic process to mix to erase the
information from initial conditions.

15



2. In finite time, the influence of history will depend on the conductance of the Markovian
process defined by (✓Ḡ , Ḡ), that is,

�(Ḡ) = min
S,S0⇢Ḡ,|S|,|S0|<|Ḡ|/2

⇢
A(S, S0; ✓, Ḡ)

|S|

�
(14)

where,

A(S, S0; ✓, Ḡ) :=
P

i2S
P

j2S0 p(Xj(t+ 1)|Vi)

|S|
where Vi could be any predecessor in the graph for Xi(t+ 1).

This appears in the previous likelihood as follows: we are actually not learning generic tra-
jectories, but those associated with the history of the trajectory, since we are learning con-
ditional distributions. So, in the previous calculation, under the most unfavorable scenario,
(X(1)(1), X(1)(2), X(1)(3)) and (X(2)(1), X(2)(2), X(2)(3)) would correspond to di↵erent regions
of state space for X, that is X

(1)(t) � C1 + C2 and X
(2)(t)  C1 � C2, for some large C2 > 0,

and we learning completely independent transitions that don’t inform each other, and moreover,
with low spatial correlations, the information gained in the marginal is proportional to X

(i)(0).

3.4 Sample Complexity for Forecasting

Where the intuition described above arises is in recent results in sample complexity. We shall see
that while the arithmetic of (13) is still correct for DBNs, there are indeed important distinctions
on the sample complexity with respect to the number of di↵erent trajectories N and the length
of the trajectory T .

Classically, theoretical analyses of time series sample complexity typically assumed that the
trajectory is much longer than the mixing time and by cutting the synthetic burn in period, as
such obviates any need to analyze historical dependence. (see the review of the previous results
in [64])

We shall report on the theoretical small sample complexity results reported in [64], which is
yet unpublished but extends and otherwise mentions similar recent results in [68, 67, 73, 16].

They derive the sample complexity results for learning and identifying a dynamic system,

X(t+ 1) = AX(t) +B✏(t),
Y (t+ 1) = WX(t) + ⇠(t)

(15)

which can be seen a simple Hidden Markov Model and ✏(t), ⇠(t) are i.i.d. normal random
variables. With a goal of fitting a test trajectory of length T

0 (that is, not necessarily equal to
T ), i.e.,

L(f̂ ;T 0
, Px) := EPx

"
1

T 0

T
0X

t=1

���f̂(X(t))� fW (X(t))
���
2
#

with a minimax risk, i.e., minimizing, algorithmically, the maximal risk associated with the
worst case population subsample Px 2 Px. They compute the guarantees associated with the
least squares solution, as defined by the specification of (13) to the form given in (15), with a
least squares loss, i.e.,

Ŵ 2 argmin
W

NX

i=1

TX

t=1

���WX
(i)(t)� Y

(i)(t)
���
2
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Finally, they require a trajectory small-ball assumption, that can be understood as a uniform
bound on the covariance matrices associated with the noise in the sequence.

With this, they present three major results, which are restated here in their informal form.

Theorem 3.1 [64, Theorem 1.1-3]

1. If N � n, T 0  T , and the trajectories are drawn from a trajectory small ball distribution,
then the excess prediction risk over horizon length T

0 is ⇥ (n/(NT ))

2. If N  n, NT � n and A is marginally unstable and diagonalizable, then the worst case
excess prediction risk over horizon length T

0 is ⇥ (n/(NT ))max {nT 0
/(NT ), 1}

3. If N � n and covariate trajectories are such that A is marginally unstable and diagonaliz-
able, then the worst-case excess prediction risk over T

0 is ⇥ (n/(NT )max {T 0
/T, 1})

From this Theorem, we can consider that with enough samples, standard rates of sample com-
plexity treating the trajectory length T and the number of trajectories N apply. However, for
large relative dimension size of the variable space, the complexity does not scale as well, but
is similarly proportional. Finally, when attempting to fit longer trajectories T

0, we finally see
that there is greater benefit towards obtaining data samples with long trajectory lengths over
sampling more trajectories.

We report on the one prominent result as far as learning so as to achieve accurate inference
on BNs. The classic work [15] reports on a sample complexity, in VC dimension analysis, of
modeling a Bayesian Network to be,

Õ

✓
n
2

✏2

✓
n2k + log

1

�

◆◆

where Õ suppresses multiplicative terms of log(n/✏), � and ✏ define the probability of an inference
within a small distance of the true outcome, n is the number of variables, and k is the number
of potential parents.

3.5 Sample Complexity for Identification

The sample complexity given above is for a measure of forecasting error, i.e., excess prediction
risk formally. As noted in the Introduction, DBNs are used for a number of purposes. This
includes not just forecasting, but also identifying a graph structure that is an interpretative
model of potential causal relationships between variables.

To the best of our knowledge, there are no sample complexity results on graph and causal
discovery identification which take separate consideration of trajectories and time steps in the
data. Instead we report on a few general recent results on the overall sample complexity for
learning a (D)BN as well as a recent result on causal discovery specifically.

In general, identifying the Bayesian Network is NP-Complete with respect to the number
of variables [10]. It is noted that the number of possible DAGs for 10 variables is greater than
4⇥1018 [52].

There are some additional sample complexity results worth reporting from the literature.
The work [49] presents poly-time identifiability in the case of bounded treewidth or acyclic

super-structure, and otherwise confirms NP-Hardness of search with respect to data. A creative
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recent work [25] uses models from physiology to argue for O
�
M

k
�
practical complexity, with M

the cardinality of a discrete valued network and k is the number of potential parents.
More favorable results are presented for linear SEMs with a recent algorithm that improves

the sample complexity to O
�
n
2 log k

�
in the case of sub-Gaussian errors and O

�
n
2
k
2/m
�
for

4m-bounded moment errors.
Finally, the work [66] considers sample complexity of causal discovery specifically, which runs

at the number of samples required being O
�
n!l3n/8

�
, where l is the cardinality of the possible

random variable values in a discrete network.

3.6 Formalization: Open System Forecasting Model

In practice, in many cases wherein DBNs are employed for modeling, understanding and forecast-
ing, the underlying system is not completely closed, as in a physics experiment, or deliberately
marginalized, as in a randomized clinical trial. Instead, it models a complex and often infinite
dimensional system, with intricate and impossible-to-know interactions with the environment.
With the presence of unknown confounders, causal su�ciency isn’t satisfied. Moreover, it can
happen that multiple structures and parameters become equally e↵ective at accurately modeling
the process, even highly distinct ones suggesting distinct causal mechanisms.

For instance, DBNs are often used for predictive maintenance, as in [1, 69]. By an ap-
propriate representation of the underlying complex engineering system as distilled into some
low dimensional latent structure, one can develop DBNs to monitor signals of deterioration or
damage in the system as based on the historical transitions over time in performance.

An interesting formalism of this is given in [21]. For some underlying stochastic process
Ẏ = g(Y (t),W (t)) with (e.g., Brownian) noise W (t) where Y 2 Y is very high, if not infinite,
dimensional, one can consider a DBN model as a finite dimensional reduced order model of
the system, and one that maximizes the information relevance towards maintenance. Formal
guarantees are provided as far as probabilistic invariance, that is,

p (X(t) 2 A, 8 t 2 [T ]) ⇡ p

⇣
Y (t) 2 Ã, 80  t  T

⌘

indicating the potential for DBNs to serve as useful indicators of higher level properties of
stochastic processes, regardless of the fundamental impossibility of formal causal structure iden-
tification in such cases.

4 Understanding Structure and Parameter Learning Algorithms

A fundamentally unique feature of learning DBNs corresponds to how structure and weights
are treated, both in and of themselves and with respect to each other, as far as modeling and
training. Theoretical foundations and best practices developed in the mature disciplines of the
statistics of graphical models, random graph theory, time series, causal learning, and others, can
provide a diverse source of insight for developing e�cient and reliable methodologies.

Here we present a number of important points of consideration that can be observed from
looking at the literature at successful attempts at representation as far as inference and learning.
With the distinctions described below, we are able to properly identify and characterize existing
structure-weight learners, as well as suggest and provide straightforward extensions to fill in the
natural empty places in the taxonomy.
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Structure Learning Structure Learning is the procedure of defining Ḡ from data. This is a
critical aspect to learning DBNs because this defines di↵erent independence structures between
the random variables. Furthermore, these graphical conditional independence structures are
interpretable as far as implying causal inference and discovery. It also precedes parameter learn-
ing - the space and dimensionality of the parameters in the model itself will vary as depending
on the structure of the graph connections. Of course, the quality of the resulting fit on the
parameter should inform the quality of the fit of the structure, insofar as it is instrumental.

Given both the rapidly exponentially exploding complexity of considering any encoding of
structure, the resulting combinatorial optimization can become di�cult to solve with large vari-
able dimension. Structure learning provides a rich source of challenging problems for combi-
natorics, integer programming, and other discrete applied mathematics. However, at the same
time, given the relative paucity of circumstances and means by which the curse of dimensionality
can be mitigated, there is a degree to which structure learning serves as a significant limita-
tion to the overall modeling procedure. This means that often, in more challenging settings,
approximate suboptimal graph structure, or using alternative modeling techniques, are used.

Parameter Learning Recall from the previous Section that there is often flexibility in the
choice of the statistical model that corresponds to individual potential structures. This flexibility
permits for incorporating o↵ the shelf methods attuned for specific parametric forms.

There are some structure solvers that define and score a structure without defining parame-
ters. These make use of binary or Gaussian models, as defined above, for which the computation
of the marginal posterior is tractable. Specifically, the posterior of the graph structure given the
data is computed through an integration that treats parameters as nuisance through an inte-
gration

R
p({Xn

i
}|✓)p(✓|G)d✓. In this case, a specific set of parameters is not explicitly defined,

however, it can be said that parameters are computed implicitly. Indeed, the marginal likelihood
of the structure is simply the integration, over the parameter space, of the posterior distribution
for the parameters.

One can note this specific phenomenon regarding the interplay of learning structure and
weights as unique to DBNs. Indeed it presents a clear tradeo↵ between computational ease
and model faithfulness. One can also consider whether the structure of parameters are more
important and significant as far as the overall modeling of the system of interest, and thus
choose more or less complex models, and more or less stringent and exhaustive structure search,
depending on this choice.

Frequentist and Bayesian We shall use the frequentist versus Bayesian distinction to indi-
cate a point estimate based on the optimization of a loss function or criterion, and a probabilistic
model, implemented with sampling, that obtains a posterior distribution of the structure and
weights given the data, respectively. A frequentist estimate is given as a complete specific struc-
ture encoding and a specific value for the parameters. It is generally expected, or at least sought,
that the relationships that the graph identifies between various is statistically significant. This
presumption often becomes unrealistic in practice, and obtaining an appropriately scaled sta-
tistically significant entire network, that is, with all significant edges, is typically unavailable.
However, since DBNs are generative rather than discriminative, this is often not a practical
concern, as they are a component in an overall statistical modeling pipeline.

The alternative of Bayesian approaches allows for modeling the full distribution of uncer-
tainty for the model considering the data. This makes the degree of confidence in the model
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quantitatively transparent. Thus, for any regime of data and parameters, some density could be
sampled. However, the combinatorial burden of structure learning then becomes transferred to
a slow mixing time. Moreover, inference will require numerical integration, and a set of samples
is less interpretable to a lay user of the model. Thus, the choice between the two is generally
instrumental, that is, in accordance with the ultimate modeling goal.

An e↵ective and commonly used technique is to employ mixtures of a finite set of structures,
see [24]. This provides flexibility and the transparent uncertainty in the model, without having
to mix through the entire combinatorial space defining possible structure.

Considerations Regarding the Relationship between Structure and Parameter Learn-
ing It is clear that the two are not independent or orthogonal, but rather the hierarchical
structure, and the discrete-continuous distinction, presents a number of possible choices as far
as algorithmic options.

For instance, consider a particular point estimate of a structure and set of parameters.
However, consider that the set of parameters is close to zero, and moreover, that is so close so
as to include zero in a, e.g., 95% confidence interval. In this case, it is clear that this implies
that the presence of this edge itself in the graph is suspect, that is, not implied by the data.

Criteria for structure still depend on the weights, even if it’s implicitly through integrating
the marginal likelihood. Thus, if the weights have a poorly specified prior, or the parametric
form for the model is incorrect, then this will curtail the legitimacy of the structure scoring
process.

It would be expected that a structure with a low marginal likelihood should have greater
uncertainty in the parameters.

These subtle but intuitive considerations suggest that modeling and learning with DBNs is
often not an o↵-the-shelf straightforward use of a black box tool, but requires intuition as to the
nature and mechanistic properties of the system of interest.

Hierarchical and One-Shot Methods In general one can consider most learning methods
to be hierarchical in the sense of first learning the structure, and with an amortized structure
estimating or sampling the weights. The use of SEMs defined by adjacency matrices including
both structure and weights simultaneously introduced what can be referred to as a one-shot
approach (we remark the interestingly similar recent popularity of one-shot methods for neural
architecture search as including parameter learning [29]).

In this case, a point estimate is obtained for both the structure and the weights simultane-
ously by solving an appropriate optimization problem that fits both of these as decision variables
to the data. To this end there are two approaches we see in the literature. In [45] an IP (for BNs,
readily adapted to DBNs) is presented that treats the structure as binary variables encoding the
activation of edge links in the graph and the parameters as separate variables, and solves the
challenging nonlinear mixed IP (relaxation into conic programs was considered in [37]). Alter-
natively, the recent work DYNOTEARS [2] presented a gradient based method for solving the
structure-parameter learning as a purely continuous optimization problem for weight matrices
in the graph. Enforcing sparsity is done to encourage proper structure learning.

This presents a straightforward path to solving an optimization problem using existing tool-
boxes to obtain a fairly accurate point estimate of the structure and parameters. Methodologi-
cally, however, we observe that specifically, there is nothing to prevent encoding a binary variable
indicating that an edge is present, and a parameter having a low magnitude to the point of zero
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being within the margin of error (or even being exactly zero in the IP case). These are clearly
contradictory as far as the meaning of the edge.

We make one additional remark going back to hierarchical approaches. Note that one can
consider that the frequentist-Bayesian distinction can be applied to present a taxonomy of meth-
ods. As a curious example, many Bayesian scoring methods, e.g. the IP method [3], can be
considered hybrid frequentist-Bayesian. This is because implicitly the grading is done with
a Bayesian parameter model, but a point estimate, that is one unique structure, is returned.
Methodologically, we see that the advantages of a hierarchical is an o✏ine calculation of scor-
ing that permits the use of simple and powerful o↵ the shelf commercial grade IP solvers, and
the disadvantage is the conceptual contradiction of applying a frequentist mindset to learning
structure with Bayesian models as weights. However, one can easily mitigate this in practice by
sampling from multiple structures, as weighted in frequency by their respective marginal likeli-
hoods. Regardless, theoretically, in the asymptotic regime, consistency can still be maintained
with all approaches and variations thereof, however [36].

5 Learning, Loss Criteria and Constraint Definitions

Now we will proceed to present some of the analytical expressions associated with learning
DBNs. Recall that we assume we have a sample of N trajectories over time horizon T , that is,
we restate (12),

S = [Nn=1T n = {Z(n)
, X

(n)(0), X(n)(1), X(n)(2), ..., X(n)(T )}n=1,...,N

5.1 Criteria

In order to ascertain the performance of di↵erent structures, a score function serves as an
objective in an optimization process. The score function is meant to evaluate the statistical
accuracy of a model. In performing structure learning as guided by a score, we are performing a
likelihood, or some maximum a posteriori maximization, in the process of traversing the decision
landscape of structures.

Selection criteria for models appears in both the BN/PGM and the time series modeling
literature. In [47] a thorough exploration of the evaluation and computation of various criteria
is presentented for a range of di↵erent time series models. In [19] it is recommended to use a
general form for an information criterion to evaluate possible networks is, for N samples and k

parameters:
�k,N = �2 logLk + Ck,N (16)

where Lk is the likelihood of the data given the model and parameters and Ck,N is a parsimony
term with the following forms:

• AIC Ck,N = 2k

• AICc Ck,N = N+k

N�k�2

• BIC Ck,N = k logN

There are a variety of options as far as how to use this criterion to choose a model. We first
present a few that are natural but do not appear consistently in the literature, before continuing
to discuss the Bayesian structure learning approach.
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We write generically the likelihood Lk({X}|⇥,G), and write,

1. One Shot Frequentist Directly maximize Lk with respect to ⇥ and ⌅ simultaneously
for a simultaneous frequentist solution, with Ck,N defined as a sparsity metric (i.e., l0
“norm”)

2. Hierarchical Frequentist Maximize Lk({X}|⇥(G),G) with respect to G. To evaluate the
likelihood given G, one must compute ⇥(G). This itself can be the maximum likelihood of
the parameters, i.e.,

⇥(G) = argmax
✓

Lk({X}|✓,G)

where conditioning on G enforces certain components of ✓ to be zero.

A popular alternative is to use Bayesian criteria. In this case, the actual score function is the
marginal posterior of the candidate structure given the data, that is p(G|{X}). For particular
kinds of parametrized DBNs, computing this posterior can be done in closed form. For a classic
discussion on the statistical intuition, motivation, and some formulations of Bayesian criteria,
see [31]

5.2 Likelihood Calculations

A common assumption made in the literature [36, 26] is that of global parameter independence.
That is, it holds that the parameters (✓|Ḡ) can be decomposed to be separable across the
transitions for each variable Xi, i.e. using the notation ✓

Ḡ,i to indicate parameters associated
with the transition step for variable Xi(t+ 1),

Assumption 5.1 It holds that,

p

⇣
✓
Ḡ |Ḡ
⌘
=
Y

i2[n]

p

⇣
✓
Ḡ,i|Ḡ

⌘

and that, for any data sample S,

p
�
S|✓G, Ḡ

�
=
Y

i2[n]

p

⇣
S|✓Ḡ,i, Ḡ

⌘

Notice that here the separability is with respect to trajectories, and not necessarily time steps.
Furthermore, below we shall see that an additional assumption of local independence is needed to
furthermore assure independence across the parameters defining the dependence of the transition
of Xi on each parent.

Since the likelihood is a separable function of the parameters, maximizing it corresponds to
maximizing the set of parameters separately for each , that is, seek to maximize, where we per-
form the usual condition dependence chain p(X(t+1), X(t), ..., X(0)|✓) = p(X(t+1)|X(t), X(t�
1), ..., X(1)|✓) = p(X(t+1)|X(t), ✓)p(X(t)|X(t� 1), ✓), ..., p(X(0)) to facilitate the presentation
of the chain of conditioning to facilitate the posterior derivation.
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5.2.1 Binary Variables

In the case wherein all variables {Xi, Z} are valued {0, 1} sampled from a Bernoulli distribution,
this presents the simplest calculation, recalling the definition of the transition model.

More significantly, here, we shall see that the more complex representation permits for closed
form computation of the marginal posterior of the structure.

To begin with, the simple linear model (5). In this case we write,
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From this functional form we can obtain, recalling generically Vdpa(i) for any parents, by any of
the dependencies, of the variable i.
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Now we take a logarithm of the expression, turning the products into sums,
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In this case, the maximum likelihood cannot be computed in closed form, and numerical methods
must be used. The similar situation holds for computing a Bayesian score under this model
restiction.

Now we consider the full combinatorial representation as defined by (20), which, with binary
outcomes, simplifies to:
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Indeed this corresponds to the local parameter independence and the unrestricted multinomial
conditions that facilitates the closed form computation for the Bayesian Dirichlet scores. To
this end, we now extend the presentation in [31] (see also [30]) to include the contribution of
the static Z variables to the model.

First we begin by writing the full expression for the likelihood and computing the likelihood-
maximizing parameter values, making use of the modeling representation in (20).

We introduce one more piece of notation, indicating the set of dynamic variables that con-
tribute in the DAG structure to node i,
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this distinguishes the dynamic variables from the static ones.
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LetN(A; C) be the counting operator of the number of elements of C that satisfy the condition

given by A. Now take the logarithm of the likelihood expression and obtain a sum-separable set
of terms for the log likelihood of each parameter, and perform generative learning to find the
parameters. Specifically,
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From which the natural maximum likelihood estimate can be formed:
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Note that in this case, the counts are over both the samples of trajectories and the time points
between them. Observe the role of the static variables Z as simply interacting covariates in
the form. Thus, when Z is of a mechanistic form that mediates the transitions, its influence
is absorbed as simply an added dimension to the parameter space. We can, however, force a
distinction between dynamic and static e↵ects if we assume their causal independence. This
would correspond to a kernel transition of the form:
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where Vdpat(i) denotes the full set of time-dependent variables that influence i. It can be seen
that we can obtain the maximum likelihood estimates as,
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From this we can see indeed that with independent causal influence, the estimate for the param-
eters governing the static nodes Z’s influence carries more statistical power, with an e↵ective
sample size scaled by T .

Now we present the computation of the Bayesian Dirichlet scores. This amounts to comput-
ing the marginal posterior of the structure by performing an integration treating parameter as
nuisance. This is derived, for instance, in [26], and used in the popular integer BN structure
learner GOBNILP [14]. The marginal posterior of the structure is given by:
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distribution,
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Recalling the expression for (21), we can see that the BDe can be computed by,
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and with dynamic-static causal influence independence, the score becomes,
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(25)

Thus, for the DBN case, computing the above amounts to evaluating the BD score. We observe,
in addition, that this derivation indicates how one can sample from the posterior distribution of
the weights given the structure that a learner identifies as maximizing the desired score. Indeed

25



the posterior of the weights given the structure is shown above, it is the expression under the
integral sign, i.e.,
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5.2.2 Gaussian DBNs

Now we present the derivation of the likelihood and Bayesian criterion (BGe) for DBNs with
Gaussian models. The development follows [26] and extends their derivation in two ways. First
we perform the recursion for computing the entire trajectory time data. Second, we include a
specific parametrization and show how one can simultaneously perform the recursion to obtain a
posterior of the weights. We, however, simplify our model to only include Markovian influence,
and not lagged autoregressive e↵ects.

We apply the model in [26] to (10) to obtain the following transition likelihood function for
the first step and prior for both the overall likelihood transition and the parameters themselves:
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Now consider that the variables have corresponding priors marginal:

X(0), Z ⇠ N ((µx(0), µz(0)), {⌃(0),⌃z}) (28)

this will be also used to derive the corresponding equivalent posterior analysis. Note that the
DAG structure is important for the sensibility of these definitions.

Let us define W . The parameter prior introduces a normal-Wishart distribution on the mean
with precision matrix T , dropping the i dependence
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where A/B denotes the Schur complement of A with respect to B. In [26, Theorem 4 and
Theorem 5] it is shown that parameter independence is preserved through the computation of
the posterior. Note that the posterior now is with respect to all the data that is present in
a transition. The DAG structure ensures that ⌫(0) is well defined as a vector, rather than
implicitly as a function of µx

j2dpas(i)(0). Finally, the last line related the two models together,
indicating how the Wishart distribution arises from the parameter distribution, in this case.

With this, we obtain the joint likelihood expression:
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for mean µ and nowhere singular covariance matrix W .

Now, with this redundant embedding in both prior in the variable space and parameter
space, we deduce how to compute the posterior of the distribution distribution of the data µ

and W from [26] for T = 2, and subsequently, compute the posterior of the parameters in the
model, while showing it is equivalent by a straightforward Bayesian posterior propagation. After
deriving the base case T = 2, we continue with the induction for T to T+1, in order to derive the
final posterior of the data, from which we can compute the marginal likelihood of the structure,
as well as sample the final posterior values.

Now from the original we know that the likelihood of the data can be given by:
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Now, before we proceed with the next time step, let us define the propagation in the hyper-
parameters, that is of the model ⌘,⌃.

27



�(1) := (�0(1),�d(1),�s(1),�z(1)) ⇠ N (⌘(1),⌥(1))
⌘
0(1) = ⌘

0(0) + 1
N
⌘̄
0(1)� ⌃(0, 1)⌃�1

dpa(i)(0, 0)⌘
0
dpa(i)(0)

⌘
d(1) = ⌘

d(0) + ⌃�1
\d (0, 0; 1)⌃d(0, 1)

⌘
s(1) = ⌘

s(0) + ⌃�1
\s (0, 0; 1)⌃s(0, 1)

⌘
z(1) = ⌘

z(0) + ⌃�1
\z (0, 0; 1)⌃z(0, 1)

⌥(1) =  ⌥(0) + ⌃(1, 1)� ⌃(0, 1)⌃�1(0, 0; 1)⌃(0, 1)
⌃(1, 1) = 1

N2 (⌫(0)� ⌫̄(1))(⌫(0)� ⌫̄(1))T

⌃(0, 1) = 1
N2 (⌫(0)� ⌫̄(1))

  P
n
X̄

(n)
i

(1)
P

V̄
(n)
j2dpa(i)(1)

!
� ⌫̄(1)

!T

⌃(0, 0; 1) = 1
N2

  P
n
X̄

(n)
i

(1)
P

V̄
(n)
j2dpa(i)(1)

!
� ⌫̄(1)

!  P
n
X̄

(n)
i

(1)
P

V̄
(n)
j2dpa(i)(1)

!
� ⌫̄(1)

!T

(32)

Recalling that, and Wab, a, b 2 {0, d, s} the block mean vector and covariance matrix com-
ponents corresponding to the estimates for �0,�d,�s, respectively, can be similarly computed
through ⌥(1).

We now perform the grand inductive step, to obtain the recursion from T � 1 to T to be as
follows, for the posterior of the data:

p
�
µ(T )|W,S(n)

, Ḡ
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In general terms, the form is broadly preserved. As such, we can reproduce the evaluation for
the marginal likelihood, that is the BGe score, directly from [26]
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where ñx  nx, ñz  nz are maximal, or the appropriate weighted average, of the sparsity of
dependence on covariates on the transition to X(t+ 1) (that is, the dimension of Vdpa(i)).

We can also express the parametric form of the posterior of the distribution of the weights,
which also follows along the recursion.
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This defines the distribution of weights. Let us finally consider the reverse transformation,
of obtaining the score from the weights. Indeed, this can be done straightforwardly, as then
W (T ) can be recovered from ⌥(T ), and then µ(T ) will have mean ⌫(T )

5.3 Enforcing Acyclicity

For ensuring that the structure that is learned is a proper Directed Acyclic Graph, there are
a number of options as far as formulations for the various optimization problems defining the
learning. Below we detail how these are enforced both when the structure is defined by integer
decision variables as well as the continuous one shot formulation.

Integer Variables The primary challenge in solving optimization problems on DAGs stems
from the exponential size of the acyclicity constraint. A well-known method to ensure acyclicity
involves using cycle elimination constraints, which were originally introduced in the context of
the Traveling Salesman Problem (TSP) in [11]. Supposing that the set of all cycles is denoted
by C, these constraints often take the form

X

(i,j)2C

ei,j  |C|� 1, 8C 2 C, (36)

where ei,j denote binary decision variables that indicate which edges are present in the directed
graph. These constraints may be complemented by di↵erent score functions to complete the
optimization problem leading to dag recovery. This can then lead to di↵erent types of problems,
some of which are linear [51, 34, 45], some quadratic [56]. Furthermore, this method of cycle
elimination is also typically augmented with a cutting plane method [48, 56].

Another method for acyclicity enforcement is derived from a well-known combinatorial op-
timization problem called linear ordering (LO) [28]. In the LO problem, we aim to find ”the
best” permutations, which may be further constrained. In the case a directed acyclic graphs,
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these permutations correspond to the placements of edges and since the basis has only quadratic
cardinality, the number of constraints is limited. The cycles are then excluded by imposing LO
constraints. A perceived drawback of this approach is the neccessity for a quadratic cost function
[57, 28].

The third method for eliminating cycles involves enforcing constraints to ensure the nodes
adhere to a topological order. A topological order is a linear arrangement of the nodes in a graph
such that an arc (j, k) exists only if node j precedes node k in this order. The discrete decision
variables, indexed by the node and placement in the topological order determine the graph. It
has been reported that in some cases this approach can lead to polynomial time learning [60].

Recently, an alternative approach based on layered networks has been proposed [57]. The
concept of layering forbids the placement of arcs between layers in a given direction. The problem
of finding a layered graph is defined by the number of layers and the minimal number of layers for
a given DAG is unique. This contrasts the topological order method described in the previous
paragraph, which can have a possitive influence on the construction of the branch-and-bound
tree [57].

One Shot Continuous Formulations Recall that in one shot continuous variable adjacency
matrix formulations, the variables denote both the structure (as far as their nonzeros) as well
as the sign and magnitude of the weights themselves. Thus it is natural to consider that a
constraint in the form of an equality of some function to zero could correspond to ensuring the
right zero-nonzero structure of the adjacency matrix to establish acyclicity. On the other hand,
considering that this must involve considerations of multiple transitions, potentially extensive
matrix multiplication could, and we shall see is, involved.

The algorithm NOTEARS [72] and DYNOTEARS[50] uses the following functional con-
straint in a continuous optimization algorithm to enforce the DAG structure of the graph,

tr exp {W �W}� d = tr

✓
I +W +

W
2

2
+

W
3

3!
+ ...

◆
� d = 0 (37)

which is meant to approximate the following (perhaps more easily enforced) set of constraints,

tr(I +W �W )� d = 0
tr(I +W �W �W )� d = 0
...

tr(I +W �nx W )� d = 0

(38)

In [70] they introduce a di↵erent constraint term that also enforces the DAG constraint, but
appears to have better numerical stability, for small µ > 0:

tr

⇣
(I + µW �W )d

⌘
� d (39)

In the procedure NO BEARS [41] the spectral radius is used to define the presence of a
DAG constraint on the adjacency graph. Certain numerical approximations make this relatively
feasible, despite the high complexity and nondi↵erentiability of the spectral radius of a matrix.

Finally, [71] present DAGS with NOCURL, which obviates the need for an explicit functional
constraint by solving:

(U⇤
, p

⇤) = argU2S min
p2Rd

f(U �ReLU(grad(p)))
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with S the space of d⇥ d skew-symmetric matrices and grad(p)ji = pi � pj defines the gradient
flow on the nodes of the graph.

6 Methods for Learning Structure and Parameters in DBNs

Now we describe the details of several prominent algorithms that are used to train DBNs.
These are not meant to be exhaustive, nor are they even intended to be chosen among the
best performing in general. Rather, we hope to present a comprehensive variety, that is, we
intend that each broad type of method that is commonly used and studied has a representative
among the algorithms chosen. These algorithms use very di↵erent techniques, and treat all
of the aforementioned considerations regarding learning, that is, the correspondence between
structure and weights, and the distinction between points and samples and hierarchical and one
shot methods. In addition, approximate (or “local”) versus exact (or “global”) methods will
indicate the tradeo↵s associated with seeking the best solution or seeking to find a satisficing
statistical model.

6.1 Highlighted Existing Methods

6.1.1 Constraint Based

Under the assumptions of causal su�ciency (no hidden confounders) and faithfulness, classical
algorithms developed by Spirtes et al. [62] have been proven to estimate the DAG without
exhaustive enumeration of possible structures (which is impossible in interesting cases). The
Peter-Clark (PC) algorithm is a method to retrieve the skeleton and directions of the edges,
relying on an empirical hypothesis test of Conditional Independence (CI) for each pair of vari-
ables given a subset of other variables. It starts from a complete undirected graph and deletes
sequentially edges based on these CI relations. PCMCI [55] is adapted to time-series datasets
and works for lagged links (causes precede e↵ects). It operates in two stages: 1/ PC testing
which identifies a potential set of parents with high probabilities for each variable X

t

j
. 2/ using

these parents as conditions for the momentary conditional independence (MCI) to address the
false positives and test all variable pairs. Statistical tests ParCorr, GPDC, and CMI are used
in both steps. PCMCI+ extends PCMCI to include contemporaneous links [54].

This is a good representative of a method that clearly prioritizes structure, and is a statis-
tically principled frequentist technique for identifying said structure. As such there are strong
asymptotic theoretical results for this method, and it is broadly accepted to be reliable as far
as identifying the ground truth. As any method prioritizing structure, however, the necessity of
focusing exclusively on a discrete procedure limits the scalability of this approach.

6.1.2 Score Based:

There are a number of methods that attempt to either optimize to obtain or sample from a
high score of a Bayesian Criterion. We include a few of these methods due to their significant
di↵erence as far as the method of optimization/sampling.

Integer Programming The Integer Programming based [3] uses the local score (BDeu, BGe,
DiscreteLL, DiscreteBIC, DiscreteAIC, GaussianLL, GaussianBIC, GaussianAIC, GaussianL0)
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to optimize the network, amortizing its evaluation, thus obviating the need to compute pa-
rameters to compute the score. This algorithm was later relased as GOBNILP [14] (Globally
Optimal Bayesian Network learning using Integer Linear Programming). GOBNILP finds the
network with the highest BDeu score under the constraint that the underlying structure can be
represented as a DAG. For every node in the graph v and every possible parent set W , binary
variable I(W ! v) is created. The optimization criterion is then sum over all possible vertices
and all possible parent sets, where the BDeu score for the selected parent set of every node is
considered, i.e., X

v

X

W

I(W ! v) ·BDeu(v,W ). (40)

The constraints are then of two types. First, each vertex needs to have only a single parent
set, which for node v formulates as

X

W

I(W ! v) = 1. (41)

The second constraint requires that there are no cycles in the graph. This is imposed by cluster
constraints, which require that there must be 1 node with no parents for any set of nodes. As
there are exponentially many such sets of nodes, the optimization problem is solved, and if a
cycle is in the final solution, the cluster constraint that prohibits the found cycle is added. Such
computation is iterated until a DAG is found, which also ensured that the optimal model is
found.

This algorithm represents the curious “frequentist-Bayesian” approach to structure-parameter
learning. As it is an IP based method, there are also practical limitations in regards to scaling,
however, the method is broadly known to be reliable and, for its search space, e�cient.

GFlowNets GFlowNet (GFN) for structure learning [17] consists of approximating the pos-
terior instead of finding a single DAG, to reduce uncertainty over models. They construct the
sample DAG from the posterior as a sequential decision problem by starting from an empty
graph and adding one edge at a time. The GFN environment is similar to Reinforcement Learn-
ing where the states are di↵erent graphs, each associated with a reward which is the score of that
structure. They define a terminal state sf to which every connected state is called complete.
The actions taken are edge adding (no edge reversal or removal). In addition, they define a
mask that prevents having cycles in the graphs. GFN’s goal is to model the whole distribution
proportional to the rewards. It also borrows from Markov chain literature, using forward and
backward transition probabilities, P✓(s0/s) and PB(s/s0) in the loss function that satisfies the
detailed balance condition:

L(✓) =
X

s!s0


log

R(s0)PB(s/s0)PB(sf/s)

R(s)P✓(s0/s)P✓(sf/s0)

�2
(42)

where R(s) is the reward function of state s. Extending GFN to DBN required changing the
scoring function BDe and BGe adequately and changing the mask used before to also take into
account the stationarity assumption (transitions are invariant in time) and to be a block upper
triangular matrix (no edges going from time slice t+ 1 to t).

This has been recently extended in [18] for sampling the structure and weights simultaneously
using recent developments of expanding the GFN environment to continuous variables [39].
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Monte Carlo Greedy Hill Search Monte Carlo methods are classical for solving di�cult
statistical problems, and have been a popular choice for learning the structure and parameters
of a DBN. There are two prominent Monte Carlo methods in the literature that developed the
foundations and have been seminal in the development of structure learning algorithms. These
include the work (1128 citations as of this writing) [24] as well as (2344) [63], who developed
the popular MMHC, a max-min hill climb (MMHC) procedure.

In the numerical experiments, we use MMHC from the package bnstruct [23].

MCMC We use [38], a more recent development. It uses order based structure sampling and
at the same restricts the search space using conditional independence tests. Performance of the
method is generally the strongest performer for di�cult problems.

6.1.3 One Shot Linear SEMs:

There are two prominent procedures that represent one shot learning of LSEMs. The two
are based on integer and continuous based optimization. LSEMs indeed uniquely presents the
opportunity for continuous optimization methods, and as such presents the possibility of scaling
the estimation procedure, at the cost of theoretical guarantees of global convergence.

Integer Programming The mixed integer-linear program defined in [45] is presented here:
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We can see that a linear model is fit with a standard least squares loss to the data. The
constraints appear, in order, as enforcing that an absent structure, defined by the binary variable
[EW ]i,j = 0, corresponds to a zero weight, that is [W ]i,j , and similarly for A. Next, we enforce
a DAG constraint on the integer variables. This was described above in the previous section.
Finally, the binary and continuous variables are indicated.

Continuous Optimization We begin by presenting the general algorithm introduced in [50]
which followed the well cited [72]. In this paper, they consider the transition dynamics of X(t)
can be expressed using the SEM:

Xt+1 = XtW +
⌧MX

⌧=1

Xt�⌧A⌧ + �t (44)
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which includes the transition encoding W , whose sparsity pattern reflects the patterns of cau-
sation and magnitudes the linear regression coe�cients in the transition. Ai are autoregressive
matrices in case of lagged e↵ects. Here �t is the noise (note that in the original, this is denoted
as Zt, which we avoid for confusion).

They solve the optimization problem,

min
W,A

1
2n

P
t,i

kXi
t �X

i
tW +

⌧MP
⌧=1

X
i
t�⌧A⌧k2 + �W kWk1 + �AkAk1

subject to Tr [exp (W �W )]� d = 0
(45)

wherein the nonlinear constraint function is based on the description in Section 5.3, in particular,
see the motivation by (37).

This method is able to impressively identify the ground truth structure for many synthetic
examples, while also performing well as far as predictive modeling and forecasting of real world
datasets.

6.2 Novel Modifications of Existing Methods

In developing the work for this paper, a few natural developments of existing algorithms, that
wouldn’t be worthwhile to appear independently, arose. We present each of these methods and
describe them

One Shot Structure-Parameter Consistent Frequentist We propose a modified variant
of (46). In this case, we introduce positive and negative weights, and require a lower bound for
the weights. Thus, if the edge is active, the weights are forced to be bounded away from zero.
This is based on two motivations:

1. In principle, a structure being correctly identified should correspond to the weights asso-
ciated with any active edge to be nonzero. Thus a search for the structure fitting the data
well should be expected to have weights that would reject a null hypothesis of zero.

2. In the literature on sparsity (k · k0) constrained optimization, e.g. [4], it can be seen that a
necessary (but not su�cient) condition for optimality is an L-stationarity condition that
implies that, e↵ectively, the indices I(✓⇤) = supp(✓⇤) are such that ✓i, i 2 I(✓⇤) must be
bounded away from zero a distance corresponding the Lipschitz constant of the gradient
and the gradient vector components corresponding to the components of ✓⇤ that are zero.
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where bW , bA > 0 are lower bounds on the magnitude of these weights.

7 Numerical Results

Note: this is a work on progress, and the numerical results reported here are exploratory
The synthetic datasets were generated following causalLens [40]. We set the maximum lag

to 1 and the graph complexity to 30, corresponding to complex causal graphs. The algorithms
used are Dynotears with hyperparameters lambda w and lambda a equal to 0.05, and a small
w threshold of 0.01. For structure identification in tables 4 and 5, we only compare the structure
of the algorithms, so the binary adjacency matrix (rather than the weighted one) is taken from
Dynotears. For GOBNILP, the algorithm only supports IID data. To use it, we run it twice
on the data in the first time slice to get the prior network, then on the two first slices to get
the transition network. For the MCMC, we use iterative MCMC followed by order MCMC
from BiDAG package, to sample the MAP DAG. We set alpha to , alphainit to 0.01 and change
hardlimit, limit on the size of parent sets , according to the number of variables per experiment.
For PCMCI+, we choose an pc alpha of 0.01 and use ParCorr as the conditional independence
test (which assumes univariate, continuous variables with linear dependencies and Gaussian
noise). We further correct the p-values by False Discovery Rate control with an alpha level of
0.01. And finally we use Max Min Hill Climbing algorithm from bnstruct package using the BIC
score. The parameters of the one shot frequentist ILP approach (see (46)) were bW = bA = 0.1.
The regularization parameters were �A+ = �A� = �W+ = �W� = 0.05.
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Structure of Numerical Comparisons We can consider three main purposes for which
DBNs may be used for, and so we perform tests comparing the learners for these three criteria
in an appropriate manner. In addition, we report on the time of execution, and present results
across the scale of small and medium covariate dimension problems.

1. Generative Accuracy A DBN is a generative model, meaning there are no labels, how-
ever, it is still meant to model the relationship between random variables. Thus a natural
comparison as to the overall statistical quality of a model would be the classic train-test
data split comparison of loss. That is, using a holdout validation set from the data, per-
form the learning to define a DBN model on the training data, and then perform a set
of inference queries on this model, and compare their output to the ground truth output
given by the validation set.

2. Ground Truth Graph Identification One of the primary goals of using BN and DBN
models for fitting various time-varying phenomena is causal discovery and causal inference.
This amounts to being able to accurately reconstruct the graph from a noisy realization
of the ground truth. Indeed under the causal identifiability assumption given above, the
relative success by which a learner is able to compute this ground truth graph is, under-
standably so, a central for evaluating DBN learners in the literature.

Data Regimes : Favorable Regime for Identification: This corresponds to NT � n, in which
case, the more generally well-developed methods are able to identify the ground truth graph.
We shall take:

(n,N, T ) 2 {(3, 30, 10), (5, 50, 50), (10, 100, 200)} (47)

High Dimensional Regime: In this case, causal identification will not be available because
the number of trajectories and time steps is insu�cient to specify the exact graph that generated
the data. However, we can still attempt to train DBN models that fit the data appropriately.

(n,N, T ) 2 {(3, 5, 10), (5, 10, 20), (10, 20, 40), (20, 40, 50), (30, 60, 100)} (48)

7.1 Model Validation Accuracy

For validation of the accuracy, we split the time series so that the first 70% are used for training,
and the remaining 30% are used for testing. Then, we use the dbnR package to evaluate the
log-likelihood of the train data given the predicted model. Results are presented in Tables 2 and
3.
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Table 2: Log-likelihood for the favorable regime. TL indicates a setting that did not finish
within the time limit, and E indicates a setting that ended in an error.

(3,30,10) (5,50,50) (10,100,200)
GFN -3.872058 144.9295 TL
Dynotears -7.249293 -68.31561 -1911.473
Gobnilp -8.655779 -37.15421 -1474.687
MCMC -6.983337 -71.15038 148.7103
PCMCI+ -9.333284 -144.704 -1986.396
MMHC -7.827745 -61.64009 TL
One Shot F. ILP -1.554613 31.7567 TL

Table 3: Log-likelihood for the high dimensional regime. TL indicates a setting that did not
finish within the time limit, and E indicates a setting that ended in an error.

(3,5,10) (5,10,20) (10,20,40) (20,40,50) (30,60,100)
GFN -Inf 192.0897 TL TL TL
Dynotears 23.58121 35.43635 126.4152 -876.4649 -2071.534
Gobnilp 24.81038 44.50767 229.5804 TL TL
MCMC 32.12857 46.05138 208.4295 -457.6892 135.5351
PCMCI+ 23.6628 13.21597 36.11931 -1021.048 -2506.6
MMHC E E E E E
One Shot F. ILP 29.60606 75.58703 TL TL TL

7.2 Structure Identification

To evaluate the qualitative measures of the predicted structure, we compared the predictions
with the ground truth adjacency matrix. The comparison was made using the structural Ham-
ming distance, which is informally the number of edges that need to be either removed from or
added to the predicted structural graph. The second measure is the AUROC, a standard metric
that measures the area under the receiver operator characteristic. The results can be found in
Tables 4 and 5.
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Table 4: Expected SHD and AUROC for favorable dimensional regime for identification. TL
indicates a setting that did not finish within the time limit, and E indicates a setting that ended
in an error.

(3,30,10) (5,50,50) (10,100,200)
SHD AUROC SHD AUROC SHD AUROC

GFN 49.0 0.766 1030.0 0.871 16432.0 0.787
Dynotears 13.0 0.658 447.0 0.608 5578.0 0.583
Gobnilp 25.0 0.493 655.0 0.548 5018.0 0.562
MCMC 31.0 0.486 378.0 0.555 4321.0 0.687
PCMCI+ 19.0 0.5 242.0 0.610 5016.0 0.541
MMHC 20.0 0.650 516.0 0.552 TL TL
One Shot F. ILP 46.0 0.770 620.0 0.824 TL TL

Table 5: Expected SHD and AUROC for high dimensional regime. TL indicates a setting that
did not finish within the time limit, and E indicates a setting that ended in an error.

(3,5,10) (5,10,20) (10,20,40) (20,40,50) (30,60,100)
SHD AUROC SHD AUROC SHD AUROC SHD AUROC SHD AUROC

GFN 57.212 0.797 442.0 0.728 3636.0 0.850 19228.0 0.863 90471 0.845
Dynotears 13.0 0.658 174.0 0.603 1126.0 0.558 2863.0 0.525 9384.0 0.528
Gobnilp 33.0 0.634 175.0 0.712 1022.0 0.663 TL TL TL TL
MCMC 43.0 0.647 228.0 0.545 904.0 0.664 2753.0 0.615 9801.0 0.614
PCMCI+ 19.0 0.5 121.0 0.5 822.0 0.519 2408.0 0.508 7639.0 0.534
MMHC E E E E E E E E E E
One Shot F. ILP 44.0 0.470 322.0 0.692 TL TL TL TL TL TL

8 Discussion and Conclusion

We hope this paper has provided a useful guide to the main principles behind learning the
structure and parameters of a DBN. We focused on the fundamentals for the most simple cases,
while targeting breadth in the scope of the various methodological approaches to learning these
models from data.

There is an important aspect to DBNs that we did not discuss, as for the simple cases
of learning it can be considered an orthogonal topic. This would be inference. DBNs are a
generative model, so by themselves they do not accomplish any particular statistical decision
test. However, one can perform various inference inqueries, such as the probability an instance
of X(2) with X(1) = 3.2 and Z = 3 be greater than 2.1. One natural one for DBNs is a forward
time forecast. Causal inference can also be performed through queries DBN models. Inference
and approximate inference have a number of di↵erent procedures available, as far as e�ciently
and e↵ectively sampling from the network.

Furthermore, inference algorithms are required in order to further extend DBN modeling
to many real world datasets. For one, they become necessary for the expectation step in an
Expectation-Maximization algorithm to learn structure with hidden variables. Often, with sys-
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tems wherein the mechanism of action isn’t observed, a latent variable structure is able to model
a rough set of possible dependencies that fits the observed data directed to and from in the graph.

For larger dimensions, IP approaches become computationally infeasible. In such a circum-
stance, given the Sample Complexity discussed in Section 3.

When data is plentiful, that is, millions and possibly easily available streaming samples,
then neural network approaches can be e↵ective. This suggests, for instance, the potential
scalability of Generative Flow Networks [2] for instance. Reinforcement Learning is another
common approach [74]. Otherwise, in the high-dimensional regime, wherein samples are finite
but there are many covariates, Bayesian methods [6] or meta-heuristics are typically applied [33].
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Abstract

There has been a growing interest in causal
learning in recent years. Commonly used
representations of causal structures, includ-
ing Bayesian networks and structural equa-
tion models (SEM), take the form of directed
acyclic graphs (DAGs). We provide a novel
mixed-integer quadratic programming formu-
lation and an associated algorithm that iden-
tifies DAGs on up to 25 vertices with high
precision, where identifiability conditions hold.
We call this method ExDAG, which stands
for exact learning of DAGs. The exact learn-
ing is guaranteed by the global convergence
of the branch-and-bound-and-cut algorithm,
which is utilized. Although there is a super-
exponential number of constraints that pre-
vent the formation of cycles, the algorithm
adds constraints violated by solutions found,
rather than imposing all constraints in each
continuous-valued relaxation. Our empirical
results show that ExDAG outperforms state-
of-the-art solvers in terms of precision when
considering Gaussian noise on medium-sized
graphs.

1 Introduction

Learning of causal representations and causal inference
has received significant attention recently (Peters et al.,
2017; Schölkopf et al., 2021; Ahuja et al., 2023, e.g.).
With the aim of tackling a variety of challenges in a
wide range of applications, many models and method-
ologies (Pearl, 2009; Park et al., 2023; Buchholz et al.,
2024; Lorch et al., 2024; Yu et al., 2021; Zhang et al.,
2024; Chen et al., 2021, e.g.) have been introduced.
In machine-learning literature, probabilistic graphical

Preliminary work. Under review by AISTATS 2024. Do not
distribute.

models (Koller and Friedman, 2009), in general, and
Bayesian networks, in particular, are often used. In
statistics and biomedical applications, structural equa-
tion models (Yuan and Bentler, 2006; Duncan, 2014)
and additive noise models (Peters et al., 2017) are very
popular. All can be seen as learning of (edge-weighted)
directed acyclic graphs (DAGs).

Learning of DAGs, where the vertices correspond to the
random variables and the oriented edges represent their
dependencies, underlies the learning of both Bayesian
networks and structural equation models, where alge-
braic manipulations can be interpreted as interventions
on the causal system (Bottou et al., 2013). The iden-
tification of such a structure is usually mediated by a
score function, whose minimization identifies a class of
graphs. Alternatively, one may employ selective model
averaging (Madigan and Raftery, 1994).

In the present article, we focus on the learning of a
DAG using a polynomial score function under the as-
sumption of identifiability, which is given by persistent
excitation (Willems et al., 2005, Section 2), or equiva-
lently, rank of the Henkel matrix (Willems et al., 2005,
Theorem 1). Depending on the construction of the
score function (Heckerman, 2022), score-optimal DAG
maximizes likelihood for Gaussian and non-Gaussian
noise. Our main contribution is not restricted to a
particular noise distribution, though (see Section 3).

The paper is structured as follows. Section 2 contains
a brief overview of the state-of-the-art, which is most
relevant to the presented work along with motivation
that lead to the development of ExDAG. The follow-
ing two sections (Sections 3 and 4) detail the model
used for identification, identifiability conditions and a
description of the algorithmic treatment, which follows
from the formulation of the problem as a mixed integer
quadratic optimization. Lastly, Section 5 contains a de-
tailed benchmarks that contextualize the performance
of ExDAG with respect to the state-of-the-art.

1.1 Main Contributions

Our contributions within the learning of a DAG, such
as in the learning of a Bayesian network, comprise the
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following.

• We consider the identification of static Directed
Acyclic Graph (DAGs) that leads to a mixed-
integer quadratic problem, which is a natural
choice since the form of the cost function guaran-
tees that the global solution of the problem is a
maximum likelihood estimator (see Section 3).

• We propose ExDAG, a branch-and-bound-and-
cut algorithm for solving the formulation, which
avoids the use of exponentially many constraints at
the root node and avoids exponential-time prepro-
cessing steps, while making use of mixed-integer
quadratic programming techniques, which lead to
a guarantee of global convergence.

• We perform a head-to-head comparison of ExDAG
with state-of-the-art solvers of Andrews et al.
(2024); Zheng et al. (2018); Waxman et al. (2024),
which have appeared in major venues. The com-
parison shows favorable precision figures for graphs
up to 50 vertices.

2 Related Work

Focusing on the identification of Bayesian networks rep-
resenting causal inference, we may delineate between
two major strategies that lead to identification. The
first one of these focuses on global optimality, which,
due to the presence of cycle-exclusion constraints, leads
to an exponential runtime (Cussens, 2011; Bartlett and
Cussens, 2017; Cussens et al., 2017; Studený et al.,
2021; Kitson et al., 2023, e.g.). This naturally leads to
scaling issues, which are typically overcome by impos-
ing additional assumptions such as a maximal degree
or certain structural properties of the graph (e.g., exis-
tence of a decomposition from structural graph theory,
cf. Hliněný et al. (2008)). This greatly limits the appli-
cability of global methods in practice as many problems
of interest do not conform to these assumptions.

Recent locally convergent methods (Zheng et al., 2018;
Andrews et al., 2024; Waxman et al., 2024) address
the aforementioned shortcoming by formulating the
problem in continuous optimization. Cycle exclusion
is then enforced by means of a continuous function
of the adjacency matrix, which allows for scaling to
hundreds of vertices. This scaling, however, is bought
at a price as the convergence to global optimum is no
longer guaranteed (due to non-convex constraints) and
results may vary based on problem set. For certain
problem sets, these solvers enjoy reasonable precision,
for others not so much. The aforementioned sensitivity
to instance selection is further documented in Section 5.

In this paper, we present a novel method, which comes

with global optimality guarantees, while still allowing
for scaling. The basis for the algorithmic solution is
the structural equation model (SEM) described in the
following section.

3 Problem Formulation and
Identification Results

In general, the problem of score-based Bayesian network
learning can be seen the identification of a SEM (Hoover
and Demiralp, 2003; Kilian, 2011). Assuming

• linearity,

• no backwards in time dependence between the d

random variables (autoregressive order zero) and

• n available samples per random variable,

the model reads

X = XW + Z, (1)

where W 2 Rd,d is the weighted adjacency matrix of
the network, Z 2 Rn,d is the additive noise vector,
X 2 Rn,d is the data matrix in which each column
corresponds to a random variable.

Now a cost function, which is the maximum likelihood
estimator for su�ciently small regularization and a
wide array of noise types is defined as

J (W ) = kX �XWk2
F
+ � kWk , (2)

where � > 0 is a su�ciently small regularization coe�-
cient, k·k denotes an arbitrary norm, which is usually
chosen to be the l1-norm and k·k

F
denotes denotes

the Frobenius norm. The problem of score based DAG
learning can then be cast as

min
W

J (W ) ,

G (W ) 2 �DAG.

(3)

Under a variety of identifiability assumptions, it has
been shown that the solution of (3) recovers a DAG
from a given equivalence class with high probabil-
ity in the static case under Gaussian (van de Geer
and Bühlmann, 2012; Aragam et al., 2017) and non-
Gaussian noise vectors (Shimizu et al., 2006; Loh and
Bühlmann, 2013). We refer to Willems et al. (2005);
Ahuja et al. (2023) further discussion on identifiability.

4 Identification as a Mixed Integer
Quadratic Problem

Let us present an intentionally simplistic formulation
for the identification of static DAGs. The construc-
tion is such that the cycle-exclusion constraints can be
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added using a callback at runtime, which is key when
scaling to larger instances. Another key feature is that
this callback makes use of a simple separation routine
that has only quadratic complexity in the number of
graph vertices in the worst case.

Suppose that the description of the directed weighted
graph is given by the following set of variables

ei,j 2 {0, 1} is decision variable that is 1 if and only if

there exists an edge from

vertex i to j (i 6= j)

wi,j 2 R is the decision variable that represents

the weight of edge ei,j .

The objective function utilizes a penalized lp norm:

Jp =
nX

i=1

dX

j=1

�����Xi,j �
X

k

Xi,kwk,j

�����

p

+ �

X

e2E

e, (4)

which avoids the use of a bilinear term, while being
equivalent as long as we utilize the additional con-
straints

wk,j  cek,j , wk,j � �cek,j for all k, j 2 {1, 2, . . . , d} ,
(5)

where c > 0 denotes a constant that corresponds to the
biggest weight magnitude allowed. The regularization
constant � > 0 in (4) is discussed in Section 5. The
exponent p 2 N is p = 1, 2. Although the objective (4)
gives rise to a mixed-integer linear formulation when
p = 1, the global minimum would no longer represent
the maximum likelihood estimator. (Cf. Section 3.)
For this reason, we set p = 2 and deal with a mixed
integer quadratic problem in the following sections.

Finally, let C be the set of cycles of a graph on d vertices,
where each cycle c 2 C of length k is described by a
set of edges, i.e., c = {(i1, i2), (i2, i3), . . . , (ik�1, i1)} .
A constraint excluding one cycle c 2 C from a solution
in terms of e reads

X

(i,j)2c

ei,j  k � 1. (6)

A key challenge is the number of cycles, and thus the
number of constraints (6).

4.1 The Branch-and-Bound-and-Cut
Algorithm

A key contribution of ours is a branch-and-bound-and-
cut algorithm for solving the formulation above. We uti-
lize the usual branch-and-bound algorithm (Achterberg,
2007, e.g.), but implement cycle exclusion (6) using

so-called “lazy” constraints. Lazy constraints are only
checked when an integer-feasible solution candidate has
been identified. When a lazy constraint is violated, it
is included across all nodes of the branch-and-bound
tree. In summary, at the root node, we utilize only
O(|E|) constraints (5). Subsequently, one introduces
cycle-exclusion constraints (6), but numerical practice
has shown that the number of cycle constraints needed
is far lower than the ”full” super-exponential amount.

Notice that once a new mixed-integer feasible solution
candidate is found, it is easy to detect cycles therein
using depth-first search (DFS). If a cycle is found,
we add the corresponding lazy constraint (6). The
DFS algorithm has a worst-case quadratic runtime
in the number of vertices of the graph, in constrast
to algorithms separating related inequalities from a
continuous-valued relaxation (Borndörfer et al., 2020;
Cook et al., 2011), such as the quadratic program in
our case. In particular, we have tried three variants of
the addition of lazy constraints:

1. Adding only the lazy constraint for the first cycle
found.

2. Adding only the lazy constraint for the shortest
cycle found.

3. Adding multiple lazy constrains for all cycles found
in the current integer-feasible solution candidate.

We use Variant 3 throughout our numerical experi-
ments, despite going contrary to the received wisdom
(Achterberg, 2007, Chapter 8.9) suggesting that one
needs to add only a subset of cuts and utilize a carefully
crafted selection criterion to identify “good” cuts.

5 Numerical Results

In the first comparison, detailed in Section 5.2, ExDAG
is compared to the state of the art solvers NOTEARS,
DAGMA and BOSS (Andrews et al., 2024; Zheng et al.,
2018; Waxman et al., 2024). Experiments under the
assumption of Gaussian noise are performed for dif-
ferent generation methods and average edge degrees.
Second, it is shown, how the convergence to the global
minimum allows us to further improve the results of
one of the experiments from the preceding section by
granting more computational time. Lastly, we show a
simple application to a dataset, which was featured at
last years NeurIPS competition.

5.1 Setup Common to all the Benchmarking
Experiments and Comparison Metrics

We have implemented a branch-and-bound-and-cut al-
gorithm utilizing Gurobi Optimizer 11, which has been
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configured to use the simplex algorithm and to expect
lazy constraints (lazyConstraints = 1). These param-
eter settings are important for three reasons. The
simplex algorithm produces corner points of the poly-
hedra given by (5) and any of the lazy constraints.
Corner points of the continuous-valued relaxation can
be cut o↵ by the constraints (6), in contrast to points
in the interior of the optimal face, which would be
obtained by a barrier solver (Gondzio, 2012). Second,
when Gurobi expects lazy constraints, it avoids pruning
the branch-and-bound-and-cut tree prematurely, which
would have impacted the global convergence properties
(Sahinidis and Grossmann, 1991) otherwise. Third,
lazy constraints are added directly to the LP relax-
ation, without going through the cut filtering process
(Achterberg, 2007, Chapter 8.9). The Python source
code is provided in the Supplementary Material and
will be open-sourced upon acceptance. In the following,
we refer to the implementation as ExDAG.

In each of the benchmark experiments, we consider
an initial graph, represented by a weighed adjacency
matrix Winit, which is to be learnt. Next, inputs are
generated from Winit under Gaussian noise as in Zheng
et al. (2018). Lastly, the inputs are used to estimate
the structure of the DAG using the relevant method,
where we denote the adjacency matrices generated by a
method · by W·. The structure of the output adjacency
matrix often captures spurious relationships, which
can result in an edge with a negligible weight in the
solution W· (Zhou, 2009; Wang et al., 2016). This e↵ect
is negated by setting a near-zero threshold parameter
� > 0, using which we eliminate the edges of weight
smaller than � from W·. To level the playing field
between solvers, we select the optimal parameter � > 0,
whenever a ground truth is available and compare the
resulting matrices w.r.t. to this optimal parameter
selection.

Next, the metrics that are used to assess the quality
of the identification are defined. Let V and W be
two adjacency matrices (one can think of one being
the ground truth Winit and the other being the identi-
fied adjacency matrix W·). Then define the structural
Hamming distance (SHD) as

⇢ (V,W ) =
dX

i,j=1

rij (V,W ) , (7)

where

rij (V,W ) =

8
><

>:

0 if Vij 6= 0 6= Wij or Vij = 0 = Wij

1
2 if Vij 6= 0 and Wji 6= 0

1 otherwise.
(8)

SHD is used as a score describing the similarity of the
two DAGs in terms of edge placement and is commonly

used to assess the quality of solutions (Zheng et al.,
2018; Cussens, 2011; Pamfil et al., 2020).

In addition to SHD, the F1 score is used to evaluate
the results, it reads

F1 =
2

precision�1 + recall�1 , (9)

where

precision =
true positive

true positive + false positive
, (10)

recall =
true positive

true positive + false negative
. (11)

Note that the dependence of the quantities on V and
W in (10) and (11) is suppressed.

We use two well-known ensembles of random graphs:
the Erdős–Rényi model (ER) of Erdős et al. (1960)
and the scale-free network model (SF) of Barabási and
Albert (1999). In particular, the SF and ER generators
used in Zheng et al. (2018) were utilized to match
the experiments of Zheng et al. (2018) closely. As is
often the case in the causal learning community, we
report the average and worst case (min for F1 and
max for SHD) for a sample statistic for 10 seeds. The
worst-case scenarios then trivially give a bound on the
sample variance. All the experiments in the following
section were performed on a computing cluster with
AMD EPYC 7543 cpus. We set a limit of 32 GB RAM
and two cores per task.

5.2 Comparison of Identification Methods
Under Gaussian Noise

We consider graphs with an average degree between
2 and 5 with data skewed by Gaussian noise. Note
that several di↵erent regularizations were chosen in
the experiments presented. These needed to be cho-
sen per sample count n since the number of samples
a↵ects the ratio of the loss minimizing and regulariz-
ing part of the cost function (4). These were made
using the following considerations. The first step was
a selection of a wide enough set of hyper-parameters
� 2 {4, 3, 2, 1, 0.1, 0.05, 0.01}. Then, a multitude of
experiments with a short time limit (15 minutes) were
performed in which the rate of the decrease of the dual
gap was observed. The ones with the fastest rates
of decrease were chosen for the comparison in which
the computation time limit was set to 2 hours. The
aforementioned strategy may be replicated for cases in
which the ground truth is not known.

The F1 score and SHD of the identified graphs for
the generation methods ER2, SF2, SF3, and SF4 are
depicted in Figures 5.2, 5.2, 5.2, and 5.2, respectively.
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Summarizing the results, one can see that ExDAG is
able to hold its own in the lower sample regimes, while
soundly outperforming the other solvers in the high
sample regime, across the two generation methods and
three edge densities considered.

5.3 Finding the Optimal Running Time

The global convergence of the solver, guaranteed by the
use of the use of the branch-and-bound-and-cut (B&C)
algorithm (Mitchell, 2002), needs to also be studied
numerically. The progress towards global optimality
is monotone, but may stall at times. The information
about this progress suggests optimal running times for
di↵erent problems. In Figure 5.3, we show that the
first plateau was reached relatively quickly in one of
the experiments of the previous section. Thus, a time
limit of 2000 seconds would have su�ced to arrive at
the SHD reported.

5.4 Identifying DAGs from Datasets with
Real Interpretation using ExDAG

To test the capabilities of ExDAG further, we use it to
learn a DAG from alarm.csv, the only publicly avail-
able dataset from a competition held at NeurIPS 20231.
ExDAG obtains a best SHD of 55 with a Gscore 0.6258
with � = 0.5, which improves upon NOTEARS sub-
stantially, where NOTEARS identifies DAG with the
best SHD score of 65 over 100 di↵erent seeds, with the
best Gscore of 0.5578. Notice that the identifiability
in this case is not well understood. Indeed, depending
on the spectral properties of the system, a su�cient
number of samples may or may not be su�cient (Sim-
chowitz et al., 2018) for identifiability. Furthermore,
the maximum likelihood estimator is not well under-
stood, when the data points are from {0, 1} and the
range of the noise is also {0, 1}.

6 Conclusion

A novel, cycle-based formulation for identifying static
Bayesian networks based on the structural vector au-
toregressive model was proposed. This formulation
leads to a mixed-integer quadratic program (MIQP),
whose solution is the maximum likelihood estimator
for a variety of noise distributions. The cycle-based
formulation of the problem allows us to add valid
cycle-exclusion constraints only upon violation. Al-
though the separation of cycle-based inequalities from
continuous-valued relaxations is NP-Hard in some set-
tings (Borndörfer et al., 2020), and only heuristics are
known (Cook et al., 2011; Vo et al., 2023) in other

1Cf. https://codalab.lisn.upsaclay.fr/forums/
13855/2071/

Figure 1: SHD and F1 score for a test case using ER2
random ensemble; mean and maximum across 10 runs.
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Figure 2: SHD and F1 score for a test case using SF2
random ensemble; mean and maximum across 10 runs.

Figure 3: SHD and F1 score for a test case using SF3
random ensemble; mean and maximum across 10 runs.
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Figure 4: SHD and F1 score for a test case using SF4
random ensemble; mean and maximum across 10 runs.

Figure 5: Convergence progress for the generation meth-
ods SF2, ER2, SF3, SF5

settings, our approach is inspired by generalized Ben-
ders decomposition for MIQP (Geo↵rion, 1972) and
the generation of subtour elimination constraints from
integer solutions (Aguayo et al., 2018) for the travelling
salesman problem (Cook et al., 2011), which makes it
possible to have a separation method with quadratic
complexity in the number of vertices of the DAG, i.e.,
random variables.

This provides a robust and near-exact reconstruction
of DAGs up to 25 vertices, when a su�cient number
of samples is available, which surpasses the state-of-
the-art (see Section 5.2). We also demonstrate how to
utilize the primal-dual nature of the solver to formulate
termination criteria, which could be a challenge in some
applications.

As an important step for further work, one could
consider decompositions from structural graph theory
(Hliněný et al., 2008), utilized similarly to their use in
a priori enumeration of cycles in (Studený et al., 2021).
Similarly, one could consider certain pre-processing of
the instances utilizing conditional independence.
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Hliněný, P., Oum, S.-i., Seese, D., and Gottlob, G.
(2008). Width parameters beyond tree-width and
their applications. The computer journal, 51(3):326–
362.

Hoover, K. and Demiralp, S. (2003). Searching for the
causal structure of a vector autoregression. SSRN
Electronic Journal.

Kilian, L. (2011). Structural Vector Autoregressions.
CEPR Discussion Papers 8515, C.E.P.R. Discussion
Papers.

Kitson, N., Constantinou, A., Zhigao, G., Liu, Y., and
Chobtham, K. (2023). A survey of bayesian network
structure learning. Artificial Intelligence Review,
56:1–94.

Koller, D. and Friedman, N. (2009). Probabilistic
Graphical Models: Principles and Techniques.
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ABSTRACT

Causal learning from data has received much attention in recent years. One way of
capturing causal relationships is by utilizing Bayesian networks. There, one recov-
ers a weighted directed acyclic graph, in which random variables are represented
by vertices, and the weights associated with each edge represent the strengths of
the causal relationships between them. This concept is extended to capture dy-
namic effects by introducing a dependency on past data, which may be captured
by the structural equation model, which is utilized in the present contribution to
formulate a score-based learning approach. A mixed-integer quadratic program
is formulated and an algorithmic solution proposed, in which the pre-generation
of exponentially many acyclicity constraints is avoided by utilizing the so-called
branch-and-cut (“lazy constraint”) method. Comparing the novel approach to the
state of the art, we show that the proposed approach turns out to produce excel-
lent results when applied to small and medium-sized synthetic instances of up to
25 time-series. Lastly, two interesting applications in bio-science and finance, to
which the method is directly applied, further stress the opportunities in developing
highly accurate, globally convergent solvers that can handle modest instances.

1 INTRODUCTION

The problem of causal learning using graphical structures has received considerable attention from
a wide range of communities in recent years. This attention comes from the wide range of applica-
tions including, but not limited to, medicine (Rajapakse & Zhou, 2007), machine learning (Koller &
Friedman, 2009), econometrics (Luetkepohl, 2005; Demiralp & Hoover, 2003; Malinsky & Spirtes,
2018) and others (Guo et al., 2020; Assaad et al., 2022). One key reason for this is that in many ap-
plications data is abundant, but modeling using first principles may be difficult due to the complexity
of the problem at hand (Guo et al., 2020). Some of this complexity may arise due to an abundance
of non-linear effects, only a partial ability to observe the system, or unexpected stochastic effects
influencing the system. A key benefit of learning via graphical structures is the full explainability of
the output; the network may be either used to compute outputs for different situations or the learned
graph structure may be inspected and dependencies of particular interest analyzed.

In this contribution, we revisit the score-based learning of dynamic Bayesian networks utilizing
a directed acyclic graph (DAG) structure augmented by additional time dependencies from data
(Murphy, 2002; Dean & Kanazawa, 1989; Assaad et al., 2022). This approach to learning causality
has been successfully applied to a variety of problems, many of which are related to applications
in medicine (Zandonà et al., 2019; van Gerven et al., 2008; Michoel & Zhang, 2023; Zhong et al.,
2023). Besides medical applications, the dynamic Bayesian network approach representations are
widely used in econometrics (Hoover & Demiralp, 2003b) and financial risk modeling (Ballester
et al., 2023). This broad scope of applications has spawned a large number of excellent solvers,
which under different assumptions are able to discover the underlying causal structure of a system.

1



The use of various assumptions is key to ensure the tractability of a solver, since the the number of
constraints that is needed to impose to acyclicity of the representing graph is super-exponential in
the number of random variables.

One of the possible assumptions is to separate observational and interventional data (Gao et al.,
2022), which reduces the number of dependencies that need to be found. Another is the assump-
tion of underlying continuous dynamics represented by stochastic differential equations Bellot et al.
(2021). One can also assume a-priori knowledge about the time-lagged data and incorporate this
knowledge into the solver Sun et al. (2021). One can also deal with the general problem and pro-
pose local methods (Pamfil et al., 2020; Gao et al., 2022), which can scale further at the cost of some
loss of accuracy. Note that many of the previous works also combine several of these approaches to
arrive at solvers that are tractable and applicable to a wide range of applications.

We utilize mixed-integer programming in learning dynamic Bayesian networks. All of the previ-
ous works mentioned above focus mostly on solving the curse of dimensionality and scaling with
adequate precision. On the other hand, we focus on leveraging fundamental principles that apply
to quadratic mixed-integer programs to find global solutions to the score-based DAG learning prob-
lem, which results in a high quality reconstruction of the DAG. Furthermore, we tackle the curse
of dimensionality by avoiding the pre-generation of the acyclic constraints. It is shown, that given
sufficient data, only a small amount of these constraints are actually needed to ensure the acyclicity
of the resulting graph, which leads to the runtime generation of these constraints granting a large
speedup. The formulation and its implementation are easily reproducible, making it accessible to a
wide range of potential practitioners.

2 PROBLEM FORMULATION

Before formulating the problem of score-based Bayesian network learning as a mixed-integer pro-
gram, let us describe the state space using a structural vector autoregressive model (Hoover & Demi-
ralp, 2003a; Kilian, 2011). Let d, T 2 N and assume that Xi,t is a set of stochastic processes, where
i 2 {1, 2, . . . , d} and t 2 {1, 2, . . . , T}. Let the underlying DAG to be learned be characterized by
the set of vertices and edges organised in a pair (V,E), where the vertices are indexed by the set of
integers {1, 2, . . . , d} and E ⇢ V ⇥ V . Denote the auto-regressive order by p 2 N and let

W 2 Rd,d
, Ai 2 Rd,d

, i 2 {1, 2, . . . , p} , (1)

be the weighed adjacency matrix of (V,E) and Ai be the matrices encoding the time regressive
dependencies. The intra-slice interactions defined at the present time are expressed by the weight
matrix W and the inter-slice interactions are expressed by Ai. For the sake of simplicity, the matrices
Ai are assumed to be constant. Let Xt 2 Rn,d be the data matrix at time t, then the linear auto-
regressive model of order p reads

Xt = XtW +Xt�1A1 +Xt�2A2 + . . .+Xt�pAp + Z, (2)

where Z 2 Rn,d is the error vector, which is not assumed to be Gaussian. Note that non-linear
auto-regressive models can also be formulated in an analogous way. The problem may be written in
a simplified manor as

Xt = XtW + YtA+ Z, (3)
where

A = A1 |A2 . . . |Ap , Yt = Xt�1 |Xt�2 . . . |Xt�p (4)

To maximize the fit of the data over the model, a score function, which reads may be formulated

J (W,A) = kX �XW � Y Ak2
F
+ � kWk+ ⌘ kAk , (5)

where k·k denotes an arbitrary matrix norm and �, ⌘ > 0 are sufficiently small regularization coef-
ficients. The problem of interest then reads

min
W,A

J (W,A) ,

G (W ) 2 �DAG,

(6)

where A need not be constrained, since cycles are excluded by construction; k·k denotes an arbitrary
norm, which is usually chosen to be the L1-norm and k·kF denotes the Frobenius norm.
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Remark 1 The identifiability of W and A using 6 has been studied for both Gaussian and non-
Gaussian noise. Irrespective of the noise, the identifiability of A is a consequence of the basic
theory of autoregressive models (Kilian, 2011). The identifiability of W is a bit more involved and
must be separated into the Gaussian and non-Gaussian case. In either case, however, identifiability
is possible under mild conditions (Hyvärinen et al., 2010; Peters & Bühlmann, 2012).

3 MIXED INTEGER QUADRATIC PROGRAMMING FORMULATION

Formulating the learning problem as a mixed-integer quadratic problem sets things up so that a
globally convergent algorithm may be used. This is fundamental in order for high-precision learning
to be possible.

Let ei,j 2 {0, 1} and e
s

i,j
2 {0, 1} be decision variables that govern the placement of edges between

random variables at time level t and between time levels t and t � s, respectively, and let wi,j 2 R
and a

t

i,j
2 R be the associated edge weights. Using these variables, the scoring function of problem

equation 6 becomes

Jp =
nX

i=1

dX

j=1

�����Xi,j �
dX

k=1

Xi,kwk,j �
pX

s=1

dX

k=1

X
s

i,k
a
s

k,j

�����

2

+ REG, (7)

which avoids the use of a bi-linear term if the additional constraints

wk,j  cek,j , wk,j � �cek,j for all k, j 2 {1, 2, . . . , d} . (8)

and
a
s

k,j
 ce

s

k,j
, a

s

k,j
� �ce

s

k,j
for all k, j 2 {1, 2, . . . , d} , s 2 {1, 2, . . . , p} (9)

are imposed, where c > 0 is the maximal admissible magnitude of any weight and � > 0 is a
regularization constant.

Where REG is a regularization expression equals either: (L1)

REG = �

nX

i=1

nX

j=1

ei,j + ⌘

pX

s=1

nX

i=1

nX

j=1

e
s

i,j
. (10)

or (L2)

REG = �

nX

i=1

nX

j=1

ei,j + ⌘

pX

s=1

nX

i=1

nX

j=1

a
s

i,j
. (11)

Lastly, the acyclicity constraints are described. Let C denote the set of all cycles in a graph
with d vertices, where each cycle c 2 C of length k is represented as a set of edges: c =
{(i1, i2), (i2, i3), . . . , (ik�1, i1)} . The constraint excluding a cycle c 2 C from a solution then
reads X

(i,j)2c

ei,j  k � 1. (12)

The algorithmic treatment of constraint equation 12 is key in the following section, in which the al-
gorithmic treatment is discussed as implementing the branch-and-bound-and-cut algorithm without
a reduction mechanism for this constraint is doomed to fail due to the super-exponential number of
such constraints.

4 ALGORITHMIC IMPLEMENTATION USING
BRANCH-AND-BOUND-AND-CUT

One of our main contributions is the development of a branch-and-bound-and-cut algorithm to solve
the aforementioned formulation. Since the acyclic constraints 12 needs to only be imposed for the
edges of the graph representing the intra-slice level, all of what follows only applied to the intra-slice
picture. While we leverage the traditional branch-and-bound approach as described in (Achterberg,
2007, e.g.), we incorporate cycle exclusion constraints equation 12 using ”lazy” constraints. These

3



are only enforced once an integer-feasible solution candidate is found. If a violation of a lazy
constraint occurs, the constraint is added across all nodes in the branch-and-bound tree. At the root
node, only O (|E|) constraints 8 and 9 are initially used. Cycle-exclusion constraints equation 12
are added later. Note that this method is not a heuristic and does not lead to a possibly harmful
reduction (or extension) of the solution space leading to omitting possible solutions or returning
solutions which are not DAGs. Furthermore, it is shown that the number of constraints that are
actually needed in a computation are many orders of magnitude less than the number of all possible
constraints.

Once a new mixed-integer feasible solution candidate is identified, detecting cycles becomes
straightforward using depth-first search (DFS). If a cycle is detected, the corresponding lazy con-
straint equation 12 is added to the problem. The DFS algorithm solves the problem of cycle detection
in a worst-case quadratic runtime relative to the number of vertices in the graph, which contrasts
with algorithms that separate related inequalities from a continuous relaxation (Borndörfer et al.,
2020; Cook et al., 2011), such as the quadratic program in our case. Three variants of adding lazy
constraints for the problem were tested.

• Adding lazy constraint only for the first cycle found.
• Adding lazy constraint only for the shortest cycle found.
• Adding multiple lazy constrains for all cycles found in the current iteration in which an

integer-feasible solution candidate is available.

The third mentioned variant was found to consistently deliver the best results, despite (Achterberg,
2007, Chapter 8.9). Therefore, it is applied in all of the numerical tests that follow.

5 DATA GENERATION

We generated data in a manner similar to that described in Zheng et al. (2018) and Pamfil et al.
(2020). The evaluation of ExDBN was performed on synthetic data generated as follows. First,
a random intra-slice DAG was created using either the Erdős-Rény (ER) model or the scale-
free Barabási–Albert (SF) model. The DAG weights were sampled uniformly from the intervals
[�2.0,�0.5] [ [0.5, 2.0].

Next, inter-slice graphs were generated using the ER model. For each inter-slice graph, weights were
sampled from the interval [�0.5↵,�0.2↵] [ [0.2↵, 0.5↵], where ↵ = 1/⌘t�1, ⌘ � 1 is the decay
parameter, and t is the time of the slice. t = 0 corresponds to the intra-slice, while t 2 {1, . . . , p}
represents the inter-slices.

Specifically, we have adapted ER and SF generators from Zheng et al. (2018) for dynamic networks.
Notice that this results in a slightly different generator than in Pamfil et al. (2020), which may
explain some of the differences in performance of DYNOTEARS, compared to the original article.

6 NUMERICAL EXPERIMENTS

In recent years, many solvers have been developed to facilitate the graphical learning of Bayesian
networks that represent causality (Pamfil et al., 2020; Hyvärinen et al., 2010; Malinsky & Spirtes,
2018; Gao et al., 2022; Dallakyan, 2023; Lorch et al., 2021). Each of these solvers (including the
one presented) face the curse of dimensionality, which somewhat restricts the applicability of each
solver and thus through testing needs to be provided. It is impossible to test the proposed solution
w.r.t. every solver developed. There is, however, a significant branch of development that allows for
direct comparison and by transitivity of results the comparison with many previous solvers follows.

In 2020, Pamfil et al. (2020) have developed a locally convergent method, called DYNOTEARS, that
learns causality as a Bayesian network that supersedes the solution methods previously developed
(Hyvärinen et al., 2010; Malinsky & Spirtes, 2018; Zheng et al., 2018). Further developments based
on previous publications include formulating the problem in the frequency domain or defining dif-
ferentiable Bayesian structures (Dallakyan, 2023; Lorch et al., 2021). In the following, we provide a
head-to-head comparison with DYNOTEARS and thus by transitivity with the methods documented
by Hyvärinen et al. (2010); Malinsky & Spirtes (2018).
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Figure 1: SHD, F1 score, and G score for a test case using ER3-1 random ensemble, i.e., edge-vertex
ratio 3 on intra graph, e-v ratio 1 on inter graph, recursion depth 1.
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Figure 2: SHD, F1 score, and G score for a test case using SF3-1 random ensemble, i.e., edge-vertex
ratio 3 on intra graph, e-v ratio 1 on inter graph, recursion depth 1.
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Figure 3: SHD, F1 score, and G score for a test case using ER2-1-1 random ensemble, i.e., edge-
vertex ratio 2 on intra graph, e-v ratio 1 on inter graphs, recursion depth 2.
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6.1 BENCHMARK SETUP AND QUANTITIES OF INTEREST

In Section 6.2, Winit denotes the adjacency matrix representing the intra-slice dependencies and Ainit
denotes the inter-slice dependencies of the ground truth, where Ainit is used to denote a p-tuple as in
equation 4. Winit and Ainit are then used to generate data while applying noise of Gaussian distribu-
tion. Following the data generation process, a matrices W and A are identified and compared with
Winit and Ainit. Because the noisy data inevitably leads to some falsely identified edges, typically
with negligible weights, one may remove edges with weight less than � > 0 from the W and A,
resulting in a graph W

� and A
� , respectively. To compare methods for known ground truth Winit

and Ainit, we choose the best possible � > 0 for each method. This � > 0 may then be used as a
reference for learning from data, where a ground truth is not known. Next, we introduce the relevant
metrics used to evaluate the quality of reconstruction, when Winit is available.

In the following, we suppose that a DBN represented by an inter-slice matrix V and inter-slice
matrix A is denoted by an ordered pair (V,A). Let (V,A) and (V,A) be two such pairs, then one
defines the structural Hamming distance (SHD) as

⇢ (V,A;W,B) =
dX

i,j=1

rij (V,W ) +
pX

k=1

dX

i,j=1

rij (Ak, Bk) , (13)

where

rij (C,D) =

8
<

:

0 if Cij 6= 0 and Dij 6= 0 or Cij = 0 and Dij = 0
1
2 if Cij 6= 0 and Dji 6= 0
1 otherwise.

(14)

SHD is used as a score that describes the structural similarity of two DAGs in terms of edge place-
ment and is commonly used to asses the quality of solutions (Zheng et al., 2018; Pamfil et al., 2020).
Besides SHD

precision =
true positive

true positive + false positive
and recall =

true positive
true positive + false negative

, (15)

are used Andrews et al. (2024) to evaluate the quality of structural recovery. It is important to note
that precision and recall isolate the false positives and negatives, respectively, opposed to SHD,
where these quantities are both accounted for simultaneously. The last metric that can be used to
evaluate structural similarity is the F1 score and reads

F1 =
2

precision�1 + recall�1 . (16)

Note that all of the quantities evaluated in equation 15 and equation 16 are a result of summing up
all of the differences over both inter and intra slice dependencies between a given pair (V,W ) and a
grownd truth.

Although structural similarity is a key concern, merely comparing structural properties does not tell
the full story, as the weights play a crucial role in the resulting statistical behavior of the found DAG.
This motivates us to additionally utilize a cost function based metric, which reads

�p (V,W ) = |Jp (V )� Jp (W )| , (17)

where � = 0 and typically p = 2. We may also evaluate the differences in adjacency matrices by
considering

kV �WkF , (18)
where k·kF denotes the Frobenius norm.

6.2 SYNTHETIC BENCHMARK RESULTS

In the following benchmark, the generation methods described in Section 5 are used to compare
ExDBN with DYNOTEARS Pamfil et al. (2020) under the assumption of Gaussian noise. Even
though the cost function is a maximum likelihood estimator (see Section 1) for non-Gaussian noise
also, we leave this evaluation for a future publication. The scaling is studied for different numbers
of variables, samples and graph generation methods with the relevant metrics; SHD, F1 score and G
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score recorded in Figures 1, 2 and 3. A statistical ensemble with 10 different seeds was used for each
of the experiments and the mean and worst possible case value is used in the plots. It should be noted,
that naturally the worst possible value and the mean can together be used to bound the variance with
respect. The solution time is capped for ExDBN at 7200 seconds and the regularization applied
in ExDBN needs to be scaled appropriately with the number of samples as it is assumed that the
optimal choice of regularization constant is a decreasing function of the number of samples. We use
the aforementioned as a guide (in a non-strict way) to find the right regularization for a given sample
size. This follows from the fact that the regularization is to be kept proportionally small to the main
objective expressed by equation 7. Furthermore, it was found that changing the regularization from
L1 to L2 is beneficial for identification when the number of samples is large. Furthermore, if we
don’t know the ground truth graph. We can try to run the algorithm for multiple values of � and ⌘

and then use the one which yields better MIP GAP. For smaller number of samples the regularization
L1 works better. For bigger number of samples L2 yields good results and it is usually faster.

The tests results may be divided into two categories by the average number of edges. Figures 1 and
2 show higher degree graphs (average degree 3) and Figure 3 depicts the reconstruction of a lower
degree graph. In the case of the lower degree graph, it is clear that both DYNOTEARS and ExDBN
perform similarly with ExDAG beating out DYNOTEARS some of the time with the converse be-
ing true equally often. In the case of the identification of higher degree graphs, however, one can
notice that the worst possible performance and the mean performance are much closer in the case of
ExDBN, where we can point out for instance the G score in the case with 1000 samples. In these
instances the differences between the worst possible G score difference is between 0.3 and 0.5 in the
case of DYNOTEARS but stays well under 0.1 in the case of ExDBN. The aforementioned can be in-
terpreted as superior reliability of solution as the worst possible reconstruction is consistently better.
Focusing on the 1000 sample case still, while somewhat taking into account the previous ones also,
we see that the performance gap between the solvers increases in favor of ExDBN as we increase
the number of samples. In the lower sample cases, one may also observe that ExDBN outperforms
DYNOTEARS for many graph sizes in the mean and consistently outperforms DYNOTEARS in
the worst possible case (min/max depending on metric). Note that the global convergence of the
method, which is rooted in the fundamentals of mixed integer quadratic programming, allows us
to increase computation time, which leads to improving the metrics reported further. While some
time-sensitive applications like short term stock evaluation might not be able to benefit from this,
others like biomedical applications might benefit as a computation lasting several days, in which the
accuracy in measurably improved (by monitoring the duality gap), is desirable.

6.3 APPLICATION IN BIOMEDICAL SCIENCES

In biomedical sciences, there is a keen interest in learning dynamic Bayesian networks with the
view of estimating causal effects (Tennant et al., 2020) and identifying confounding variables that
require conditioning. A recent metaanalysis (Tennant et al., 2020) of 234 articles on learning DAGs
in biomedical sciences found that the averaged DAG had 12 nodes (range: 3–28) and 29 arcs (range:
3–99). Interestingly, none of the DAGs were as sparse as the commonly considered random ensem-
bles; median saturation was 46%, i.e., each of all possible arcs appeared with probability 46% and
does not converge to a global minimum of the problem.

As an example, we consider a recently proposed benchmark of Ryšavý et al. (2024), where Krebs
cycle is to be reconstructed from time series of reactant concentrations of varying lengths. There,
DYNOTEARS cannot reach (Ryšavý et al., 2024) F1 score of 0.5 even with very long time series. In
contrast, our method can solve instances equation 7 to global optimality. Using ExDBN, however,
the global minimization is ensured given sufficient time and thus the maximum likelihood estimator
is found. It should be noted, however, that depending on the number of samples and noise, it may
be that even the maximum likelihood estimator is not sufficiently accurate. This does not however
reflect poorly on the method itself, but it rather a matter of the modification of data collection meth-
ods associated with the experiment. In one hour time limit, ExDBN can find a solution with 38%
duality gap.
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6.4 APPLICATION IN FINANCE

In financial services, there is also a number of important applications. The original DYNOTEARS
paper considered a model of diversifying investments in stocks based on dynamic Bayesian net-
works. Independently, Ballester et al. (2023) consider systemic credit risk, which is one of the most
important concerns within the financial system, using dynamic Bayesian networks. They found that
the transport and manufacturing sectors transmit risk to many other sectors, while the energy sec-
tor and banking receive risk from most other sectors. To a lesser extent, there is risk transmission
present between approximately 25% of the pairs of sectors, and these network relationships explain
between 5 % and 40 % of single systemic risks. Notice that these instances are much denser than
the commonly used random ensembles.

We elaborate upon the example of Ballester et al. (2023), where 10 time-series capture the spreads
of 10 European credit default swaps (CDS). Considering the strict licensing terms of Refinitiv, the
data from Ballester et al. (2023) are not available from the authors, but we have downloaded 16 time-
series capturing the spreads of 16 European CDS with RED6 codes 05ABBF, 06DABK, 0H99B7,
2H6677, 2H66B7, 48DGFE, 6A516F, 8A87AG, 8B69AP, 8D8575, DD359M, EFAGG9, FF667M,
FH49GG, GG6EBT, NN2A8G, from January 1st, 2007, to September 25th, 2024. This amounts to
over 11 MB of time-series data, when stored as comma-delimited values in plain text. While the
procedure for learning the dynamic Bayesian network in Ballester et al. (2023) is rather heuristic,
we can solve the mixed-integer programming (MIP) instance for the 16 European CDS within 2
minutes. In the heuristic of Ballester et al. (2023), they first perform unconditional independence
tests on each set of two time series containing an original series and a lagged time series, to prune
the subsequent number of unconditional independence tests performed. There are 45 unconditional
and conditional independence tests performed first, to suggest further 200 conditional independence
tests. We stress that the procedure of Ballester et al. (2023) does not come with any guarantees,
while our instance equation 7 is solved to global optimality. The run-time to global optimum of 2
minutes (using L2 regularization) validates the scalability of mixed-integer programming solvers.

7 CONCLUSION

Dynamic Bayesian networks have wide-ranging applications, including those in biomedical sciences
and computational finance, illustrated above. Unfortunately, their use has been somewhat limited
by the lack of well-performing methods for learning those. Our method, ExDBN, provides the best
possible estimate of the DBN, in the sense of minimizing empirical risk equation 7. Significantly, our
method does not suffer much from the curse of dimensionality even for real-world, dense instances,
which are typically challenging for other solvers. This is demonstrated most clearly in the systemic-
risk transmission use-case detailed in Section 6.4, in which the global minimizer is found within 2
minutes. Additionally, the use of the guarantees on the distance to the global minimizer (so-called
MIP gap, available ahead of the convergence to the global minimizer) provides a significant tool
for fine-tuning the parameters of the solver in the case of real-world application, where the ground
truth is not available. Combined with global convergence guarantees of the maximum likelihood
estimator, this provides a robust method, with state-of-the-art statistical performance.
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1 Introduction

Dynamic Bayesian Networks (DBNs) are a class of Probabilistic Graphical Models that enable the
modeling of a Markovian dynamic process through defining the kernel transition by the DAG structure
of the graph found to fit a dataset. There are a number of structure learners than enable one to find
the structure of a DBN to fit data, each of which with its own set of particular advantages and
disadvantages.

The structure of a DBN itself presents transparent criteria in order to identify causal discovery
between variables. However, without the presence of large quantities of data, identifying a ground
truth causal structure becomes unrealistic in practice. However, one can consider a procedure by which
a set of graphs identifying structure are computed as approximate noisy solutions, and subsequently
amortized in a broader statistical procedure fitting a mixture of DBNs. Each component of the mixture
presents an alternative hypothesis on the causal structure. From the mixture weights, one can also
compute the Bayes Factors comparing the preponderance of evidence between di↵erent models.

This presents a natural opportunity for the development of Empirical Bayesian methods. See,
e.g. [12] for a classic overview. Empirical Bayes attempts to combine the frequentist and Bayesian
modeling approaches by using a frequentist point estimate as a prior for a subsequent Bayesian model.
In this case, we perform this as a mixed integer programming problem [1], solving for the optimal
structure and weights on a subsample of the data. This provides us with a point estimate of an
optimal (and consistent, see [9]) structure. Subsequently we repeat the procedure with a di↵erent
subsample of the data while encouraging model heterogeneity. After obtaining M models with least-
squares optimized weights {⇥m}m=1,...,M , now we solve a measure valued problem wherein we relax
the structure component into learning a mixture across these networks, corresponding to optimization
over an M dimensional simplex and at the same time, solving for the measure defining the posterior
distribution of the weights using a prior that centers on the MIP solution and enforces an f-divergence
from this prior as a constraint.

There are a number of fundamental advantages to this procedure. As described in [5], in the
common scenario of interest for learning (D)BNs, with high dimensionality of the feature space and a
paucity of data samples, overconfidence in regards to certainty of structure is often deleterious to ap-
propriate certification of model accuracy and variance. On the other hand, appropriately constructing
a mixture model a priori is methodologically challenging as far as the poor scaling of any appropriate
encoding with the problem dimension. With an uninformative prior, mixing times can be unreasonably
long. However, by initially finding a set of distinct high quality models to serve as the basis of the mix-
ture, we manage to perform Bayesian learning, that is uncertainty quantification for non-asymptotic
sample size circumstances, without the potential computational expense of encoding and sampling the
entire DBN representation at once.

This formulation leads to a class of problems of contemporary interest in Bayesian Statistics de-
scribed as Generalized Variational Inference (GVI), e.g. [7]. GVI presents a novel probabilistic approach
to considering Bayesian statistical models that generalizes classical Variational Inference to consider

∗These authors contributed equally
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the use of alternative score functions as well as a generic set of probability distances and divergences.
GVI was found to outperform classical Bayesian methods for circumstances of incorrect or imprecise
model and prior specification.

As this statistical method is new while at the same time quite general, few algorithms and proce-
dures have been developed for it. Recently the work [6] appeared which presented a comprehensive
method for a very similar Coherent GVI (CGVI) problem, with theoretical convergence guarantees
and promising illustrative performance across a variety of problems and choice of divergences. The
procedure transforms the measure valued optimization into a low dimensional convex (however, non-
Lipschitz) problem and high dimensional sampling.

In order to simplify the computational task of sampling from high dimensional but low sample
settings, we make the simplifying assumption of a linear Structural Equation Model (LSEM). Formally,
we have a state vector Xt which evolves as,

Xt = XtW +Xt�1A1 + ...+Xt�pAp + Z (1)

where W is the adjacency matrix of an acyclic graph for intra-slice edges and Ai for inter-slice edges,
respectively, and Z is the noise. Consider the availability of data in the form {Xm,t} with m = 1, ...,M
independent samples of trajectory length t = 1, ..., T of dimensionality Xm,t 2 Rd. This is a popular
representation for a DBN, with the sparsity (zero and nonzero) structure of the adjacency matrices
corresponding to the presence or lack of edges, thus defining the graph structure of the DBN transitions.

We now proceed to describe the major components of the approach and details of the procedure.

2 Empirical Bayesian Model and Prior Estimate with MIP

Learning BNs has a natural association to Integer Programming (IP) and other combinatorial solvers,
given the extensive rich combinatorial structure [3]. However, in many cases of interest, the data are
high-dimensional and yet we are limited as far as quantities of data samples. In such circumstances,
enforcing sparsity becomes necessary to establish meaningful models. At the same time, the statistical
regime is not particularly favorable for recovery of an exact sparse solution [14]. Thus, a discrete
programming solution could be too rigid in its ability to fit a wide range of problem instances.

Empirical Bayes presents an approach that attempts to incorporate the advantages of uncertainty
quantification of estimates that comes with Bayesian data analysis while mitigating the risks associated
with misspecified priors. The procedure is simple: perform standard frequentist likelihood estimation
to obtain a point estimate for the model, then subsequently design a prior that is centered on the
estimate and includes a ball of uncertainty defined by probability distance. See, e.g. [2] and [4] for
comprehensive monographs.

In standard Bayesian approaches, one would present an explicit prior for (⇥,⌅) as arising from
some external parametrically defined distribution, that is (⇥,⌅) ⇠ p(⇥,⌅; ⌘) for some parameter ⌘.
A posterior estimate is computed with p ((⇥,⌅)|{Xn,t}, ⌘) / p ({Xn,t}|(⇥,⌅)p(⇥,⌅; ⌘). Typically,
however, there is no reason to suspect that ⌘ is known. In a fully Bayesian approach we would assign
a hyperprior distribution p(⌘) and require integration, i.e. treating ⌘ as a “nuisance parameter”, by
p ((⇥,⌅)|{Xn,t}) /

R
p ({Xn,t}|(⇥,⌅)p(⇥,⌅; ⌘) p(⌘)d⌘. This presents the need for significant com-

putation. Furthermore, with a poorly specified hyperprior p(⌘), especially in the small-sample case
we are interested in here, could have an outsized negative influence on the accuracy of the posterior
for (⇥,⌅). With empirical Bayes, one instead computes an estimate of ⌘̂ from the data, and uses
this to subsequently develop the full model. Note that it is also possible to keep the prior p((⇥,⌅))
non-parametric, however, in [2] it is noted that parametric estimates of the hyperprior perform better,
especially in the far from asymptotic case. For instance one can use the maximum posterior estimate
⌘̂ given the data, and use �⌘̂ as the hyperprior distribution for ⌘, obviating the need for computing a
complicated integral.

We specify a data driven robust prior (also referred to as a Parzen window), as inspired from dis-
tributionally robust optimization, which has been observed to yield favorable generalization properties
for machine learning models [13]. To this end we consider that that true Bayesian model corresponds
to a mixture of structures together with an uncertainty ball centered on a particular parameter set.
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To this end, we present some important notation:

Xn,t 2 Rd
, Data sample of n0

th trajectory and t time instance
⇥m 2 Rd(⌅m)

, ⌅m = (⌅W
m
,⌅A

m
) 2 {0, 1}d⇥d

, {0, 1}d⇥d⇥p
, m’th model decision variables

S({Xt,n}N,T , S) = S := {Xi,t}i=n1,...,nS ,t2[T ], {n1
, ..., n

S} ⇠ U
⇢

N

S

�

(⇥,⌅) = MIP ({Xn0,t}), the MIP solution operation on the data {Xn0,t}n02S

(2)

Here S represents the uniform sub-sampling operator. We can now present the generic form of the
source of our initial frequentist estimate.

2.1 Integer Programming Estimates

In this case, we perform hierarchical inference based on the mixed nonlinear integer programming
formulation defined in [11] (see also [9], which presents a relaxation technique using SOCPs for solving
large instances).

To this end the DBN model incorporates a directed acyclic graph (DAG) Ḡ = G(V, EW )[G(V, EA)
which defines the present connections in the model. That is e = {X1, X2} 2 EW if W1,2 6= 0, that is 1
is a parent of 2 in EW .

We present the IP problem for solving (EW , EA) 2
⇥
{0, 1}d ⇥ {0, 1}d

⇤
⇥
⇥
{0, 1}d ⇥ {0, 1}d

⇤p
, below.

Note that with integer variables, one can induce a regularization of, e↵ectively kWk0, rather than the
one norm as previously defined in the one-shot formulation. See the discussion on [9, pg 6] indicating
that for DAGs, the relaxed l1 formulation is often inadequate to enforce sparsity.

min
(EW ,EA,W,A)

E(EW , EA,W,A; S̃) + �W kEW k0 + �AkEAk0

:=
ÑP

n=1

TP
t=1

dP
i=1

 
[Xn,t]i �

dP
j=1

Wj,i[Xn,t]j

�
pP

l=1

nP
j=1

Al,j,i[Xn,t�l]j

!2

+ �W

P
i,j

[EW ]i,j + �A

P
l,i,j

[EA]l,i,j

s.t. W · (1� EW ) = 0,
DAG(EW ),

(EW , E
W̃
) 2

h
{0, 1}d2

i
⇥
h
{0, 1}d2

i

(EA, EÃ
) 2

h
{0, 1}d2

ip
⇥
h
{0, 1}d2

ip

W 2 Rd⇥d
, A 2 Rp⇥d⇥d

(3)

Thus, we compute the initial set of frequentist point estimates for the structure and parameters
{⇥m,⌅m} by:

Algorithm 1: Initial Integer Programming Solutions

for m = 1, ...,M do
Sample Sm := {Xnm

i ,·} ⇠ S ({Xn,·}, S), nm

i
2 [N ]

Solve (3) with S̃ ! Sm to obtain (⇥m,⌅m) := ((Wm
, A

m), (Em

W
, E

m

A
)), representing the optimal

parameters and structure the IP solver found for subsample m.
end for

There are other approaches that can also generate a set of, rather than one, model structure,
e.g. [10]. We aimed to explicitly limit the number of structures while encouraging variety in the
strategy proposed here.

3 Generalized Variational Inference Optimization Problem

Consider now that we have obtained a set of M candidate Dynamic Bayesian Network structures and
their associated parameters {⇥m}m=1,...,M . In order to define our empirical Bayes approach, we define
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a Coherent Generalized Variational Inference (CGVI) problem, which takes the form [6],

min
P2D

EP [EN (⇥)] (4)

wherein P is a probability measure on a set of paremters ⇥, U is a set of admissible measures. Finally
EN is a loss function on the N data samples with a model parametrized by ⇥, that is

EN (⇥,⌅) = E(⌅W ,⌅A,⇥W ,⇥A;S) (5)

where we shall sometimes suppress the structure in the case of clear context.

3.1 Background

The determination of D is defined using �-divergences, a natural measure for probability distances
often used for risk measures. Defining a utility functional U on a space of random variables M, with
the disutility functional V(X) = �U(�X) a divergence is �(p⇧) = V⇤(p⇧) where p⇧ is the density of
the prior measure ⇧(⇥) and V⇤ refers to the Fenchel conjugate of V.

The application of duality yields the two-dimensional convex problem:

min
��0,µ2R

{µ+ ✏�+ (��)⇤(EN � µ)} (6)

with (��)⇤ being the Fenchel conjugate of ��.
Here EN is computed to be the loss value corresponding to an i.i.d. sample, and in the original

there is a summation
P

s
(��)⇤(Es

N
� µ) over such samples indexed by s. However, in our case of

Empirical Bayes, the distribution ⇧ will be the MLE arising from the solution of the IPs above.
In our case we will use the Rényi divergence, defined as,

D↵(p||⇡) ,
1

↵� 1
logE [p↵]

for some ↵ > 0. Note that when ↵ = 1 this recovers the KL divergence. Letting � = ↵

↵�1 , this
divergence is associated, through the Orlitz conjugate, with the isoelastic disutility function,

v(x) =

✓
1 +

x

�

◆�

� 1

With a solution �̄, µ̄ to (6), the CGVI density associated with the solution is given by:

p(✓) =

✓
1 +

EN (✓)� µ̄

��̄

◆��1

(7)

Which we can re-write in Gibbs form, to facilitate sampling with Langevin and Hamilton Monte Carlo,

p(✓) = exp

"
log

(✓
1 +

EN (✓)� µ̄

��̄

◆��1
)#

= exp

⇢
(� � 1) log


1 +

EN (✓)� µ̄

��̄

��
(8)

3.2 CGVI Formulation of Dynamic Bayesian Network Learning

Now that we have introduced the general CGVI problem, we can proceed to describe how we intend
to incorporate it into our general Empirical Bayes procedure.

Recall that we have obtained frequentist estimates for the structure and parameters {⇥m,⌅m}
to serve as a pivot for the Empirical Bayes. To this end, we consider that we seek a solution to a
hierarchical Bayesian problem. In particular we define a mixture m 2 � that samples from the M

structures. Then, we shall see that we can treat the rest as a set of M uncoupled CGVI problems that
sample the distribution of weights ⇥ for the m’th model

Define the loss function over the entire dataset, as a function of a vector of parameters:

EN (�m(✓)) := EN (⌅m,W (�m

W
(✓)), A(�m

A
(✓))) =

NX

n=1

TX

t=1

dX

i=1

0

@[Xn,t]i �
dX

j=1

Wj,i[Xn,t]j �
pX

l=1

dX

j=1

Al,j,i[Xn,t�l]j

1

A
2

(9)
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See that the structure ⌅m significantly restricts the search space of (W,A). In order to set up the
appropriate definitions below for sampling, we introduce the following maps:

�
m : Rsm ! (Rd⇥d

,Rd⇥d⇥p),
Im = supp(⌅m) := {(i, j) 2 [Em

A
]i,j = 1} [ {(i, j) : [Em

W
]i,j = 1}}

sm = |supp(⌅m)|,
�
m(✓) = (W,A), where,

[W ]i,j = 0 when [EW ]i,j = 0, [W ]i,j = [✓]k, for some k  sm, otherwise
[A]i,j = 0 when [EA]i,j = 0, [A]i,j = [✓]k, for some k  sm, otherwise, uniquely

(10)

The details (lexicographical ordering, etc.) we leave out. Importantly, we have that E(�m(✓)) presents
a loss function for ✓ 2 Rsm .

With all the notation in place, we present the augmented CGVI with mixture weights by:

min
P2D,m2�

MX

m=1

mmEPm(✓m) [EN (�m(✓m)] (11)

where,

P =
MY

m=1

Pm(✓m), ✓m 2M(Rsm) (12)

that is, a distribution for {✓i}i2[M ] with each Pm independent. Here M(·) denotes a distribution over
the argument space.

The measure constraint is defined as D =
Q⌦

m2[M ] Dm with,

Dm = {p(✓) 2M(Rsm)|D↵ (p(✓)||�⇥m)  ✏} (13)

Where �⇥m is a delta distribution on [⇥m]Im = {[W ]ij : [EW ]ij 6= 0}[{[A]ij : [EA]ij 6= 0}. Thus Dm is
meant to ensure that ✓, as sampled from distributions of posterior-maximizing weights for the potential
function EN , is within a probability distance, the specific metric being defined by D↵, of full measure
at the original empirical solution ⇥m, restricted to the dimensionality of sm.

Due to the linearity of the expectation operator, we can see that we can perform the weight opti-
mization and sampling o✏ine for each structure, and then subsequently optimize the weight mixture.
Formally:

⇥̃m 2 arg min
P (✓m)2Dm

EP (✓m) [EN (�m(✓m))]

�!m ⇠ mi =
exp{�E✓i⇠P (⇥̃i)[(EN (�i(✓i)))]}

MP
m=1

exp{�E✓m⇠P (⇥̃m)[EN (�m(✓m))]}
(14)

Thus, we can perform the entire procedure, integer programming, sampling, and convex optimization,
for every model m 2 [M ], entirely independently and in parallel. Then, subsequently, we sample from
the mixture as weighted by the marginal posterior for that mixture. Note that this would correspond
to a noisy selection by the standard Bayesian Score Criterion as is standard for evaluating DBN
structures [8]

4 Algorithms

4.1 Optimization

Now we discuss the specific procedures we use in order to solve the measure valued optimization
problem,

⇥̃m 2 arg min
P (✓m)2Dm

EP (✓m) [EN (�m(✓m))]

for each model m. For this, we directly apply the procedures introduced for CGVI in [6]. To begin
with, taking the specific form of (6) in our case yields the dual problem

min
��0,µ2R

8
<

:µ+ ✏�+ �

 
1 +

E
P (✓̃m) [EN (�m(✓m))]� µ

��

!�

� �

9
=

; (15)
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Where � < 0 is some parameter. This is an optimization problem convex in two variables � and
µ. However, it is not locally Lipschitz, thus care must be taken as far as optimization. Precise
well-conditioned methods must be emphasized, which is possible with the low dimension.

The definition of the objective in the CGVI problem involves an expectation over⇧, the prior
distribution from which the divergence should be bounded, which in our case is �⇥m , that is, the delta
distribution centered at the IP parameter solution ⇥m. And so the optimization problem to solve in
our case is, for all m 2 [M ]

min
��0,µ2R

(
µ+ ✏�+ �

✓
1 +

Em

N
� µ

��

◆�

� �

)
(16)

where Em

N
= E(⌅m,⇥m;S)

4.2 Sampling

The posterior, given optimal �̄ and µ̄ can be sampled from the distribution:

p(✓m) =

✓
1 +

EN (�m(✓m))� µ̄

��̄

◆��1

(17)

and alternatively,

p(✓) = exp


log

⇢⇣
1 + EN (�m(✓m))�µ̄

��̄

⌘��1
��

= exp
n
(� � 1) log

h
1 + EN (�m(✓m))�µ̄

��̄

io (18)

Recall again that

E (�m(✓m)) = E (Em

W
(✓m), Em

A
(✓m),Wm(✓m), Am(✓m); {Xn,t}n=1,...,N,t=1,...,T )

=

0

@
NP

n=1

TP
t=1

dP
i=1

 
[Xn,t]i �

dP
j=1

[Em

W
(✓m)]j,iWm

j,i
(✓m)[Xn,t]j �

pP
l=1

dP
j=1

[Em

A
(✓m)]l,j,iAl,j,i(✓m)[Xm,t�l]j

!2
1

A

where the multiplication of the binary and continuous variables EW ·W , etc. is redundant, and just
noted for presentation.

4.3 Complete Algorithm

For completeness, now we describe the full procedure, incorporating all of the components of the
algorithm described above. This is defined as Algorithm 2.

The evaluation sample (19) is a multinomial with coe�cients given by the components of m. It
can be understood as the following simple operation: ⇢ ⇠ U [0, 1], that is, a uniform random number
between 0 and 1, then m = argmin{i :

P
i

j=1[m]j  ⇢}, and finally ✓
m is one sample chosen uniformly

at random from {⇥m
q
}q2[Q], the set of samples generated by model m at the optimal �̄, µ̄).
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m
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m
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S

m
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N

S
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m
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m
)
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q
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m
,�

⇤
m
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Abstract

Learning causal relationships between a set of variables is a challenging

problem in computer science. Many existing artificial benchmark datasets

are based on sampling from causal models and thus contain residual infor-

mation that the R2
-sortability can identify. Here, we present a benchmark

for methods in causal learning using time series. The presented dataset is

not R2
-sortable and is based on a real-world scenario of the Krebs cycle

that is used in cells to release energy. We provide four scenarios of learning,

including short and long time series, and provide guidance so that testing

is unified between possible users.

1 Introduction
Understanding causal models is important in a number of fields, from healthcare
to economics, as it allows for precise forecasting and training of reinforcement
learning algorithms. Learning causal models involves extracting potential non-
linear relationships and dependencies between variables from sampled time
series. For example, the modeling of biomarkers of non-communicable disease
as a function of diet and action monitoring has shown the potential of being a
powerful tool to guide the recommendations for a healthy diet.

Many researchers agree that there is a need for better synthetic datasets
to test causal learning algorithms. This is supported by works as [30, 24, 31].
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Many synthetic dataset benchmarks suffer from residual information in the data
that the R

2-sortability can identify. In the case of real-world datasets, we often
cannot be sure what the ground-truth causal relationships are. Often, datasets
for causal discovery are too large, and as a result, they are sampled without any
standardized sampling approach, thus making different papers using the datasets
incomparable.

In this paper, we aim to fill this gap and provide a standardized synthetic
dataset that does not suffer from the problems mentioned above. The dataset is
based on simulating a set of chemical reactions describing the Krebs cycle, and
for that, it uses a publicly available generator at [20]. The randomness in the
data is caused by simulating the molecules in a box and providing the molecules
with locations and velocities. Whenever molecules forming a left-hand side of a
reaction meet, they are replaced with reactants as given by the equation.

First, we provide a brief review of a variety of methods that can be used in
causal learning. Later, we provide a list of requirements that we can expect from
such causal learning methods to illustrate their expressiveness. A discussion
of which criteria are supported by the existing methods follows. Section 4
explains the dataset in detail and shows a possible evaluation of a method on the
dataset. As an example, a state-of-the-art method named DyNoTears [25] is used.
Next, we compare the presented dataset with other causal learning datasets. In
conclusion, we give preference to public repositories where the dataset, as well
as the source code for the evaluation of the method, can be found.

2 Preliminaries and Related Work
Learning most causal models involves solving NP-hard non-convex optimization
problems. Just as there is “one” convex optimization and “many” non-convex
optimization problems, there are many causal models and methods for learning
them. Perhaps the most elegant approach to causal learning utilizes techniques
from system identification.

System Identification and Linear Dynamic Systems (LDS) Let m be
the hidden state dimension and n be the observational dimension. A linear
dynamic system (LDS) L is defined as a quadruple (F,G,⌃,V), where F and G
are system matrices of dimension m⇥m and n⇥m, respectively. ⌃ 2 Rm⇥m and
V 2 Rm⇥m are covariance matrices [35]. A single realization of the LDS of length
T , denoted X = {x1, x2, . . . , xT } 2 Rn⇥s⇥T is defined by initial conditions �0,
and realization of noises �t and !t as

�t = F�t�1 + !t, (1)
xt = G0

�t + �t, (2)

where �t 2 Rm⇥s is the vector autoregressive processes with hidden components
and {!t, �t}t2{1,2,...,T} are normally distributed process and observation noises
with zero mean and covariance of ⌃ and V respectively, i.e., !t ⇠ N(0,⌃) 2
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Rm⇥s and �t ⇠ N(0,V) 2 Rn⇥s. The transpose of G is denoted as G0. Vector
xt 2 Rn⇥s is the observed output of the system. In non-linear dynamical
systems, one replaces the multiplication F�t�1 with a function f(�t�1). It is well
known [36] that there are multiple, equivalent conditions for the identifiability of
F,G, given by so-called Hankel matrices, conditions on the transfer function, or
frequency-domain conditions, among others. The is also a recent understanding
[33] of sample complexity of the problem.

Linear Additive Noise Models Throughout causal modeling, one wishes to
learn a function f , which is known as the structural assignment map and is closely
related to the f above. Under the assumption that the structural assignments
are linear, noises Nj , j = 1, . . . , N are independently identically distributed
(i.i.d.) and follow the same Gaussian distribution, or alternatively, noises Nj , j =
1, . . . , N are jointly independent, non-Gaussian with strictly positive density, one
obtains linear additive noise models (ANM). In studying ANM, one may benefit
from a long tradition of work on linear system identification. In particular,
the identifiability of linear ANM can be reduced to the identifiability of linear
dynamical systems (cf. Proposition 7.5 & Theorem 7.6 in [28]).

Bayesian networks Another classic example in causal learning are Bayesian

networks, first introduced by Pearl in 1985 [26]. Bayesian networks are formed
by a directed acyclic graph (DAG), where each vertex j represents a variable Xj ,
with edges going from one variable to another representing causal relationships.
It is assumed that each variable Xj is independent of other variables but for
its parents, PAj in the DAG, thus allowing a compressed representation of the
joint probability as

P (X1, X2, . . . , XN ) =
NY

j=1

P (Xj | PAj). (3)

The most common approach to exact inference in Bayesian networks is the
variable elimination algorithm [27]. Approximate inference algorithms are also
often applied. The most common one is the Markov Chain Monte-Carlo (MCMC)
algorithm that repeatedly samples from each variable conditioned on the values
of its parents. The MCMC algorithm predates Bayesian networks and is often
referred to as Gibbs sampling.

In relation to temporal data, the Dynamic Bayesian Networks (DBN) are a
well-known extension [8, 19]. DBNs are defined by two Bayesian networks. The
first defines the initial state, and the second is the transition model between t

and t+ 1, where nodes in layer t are assumed to be independent. The network
can then be unrolled into length T so that each of the time slices for t � 1 is
defined by the transition model.

Counterfactual Framework The counterfactual framework can be used to
derive causality. This approach focuses on the question of which input variable
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needs to change in order to change the output of a model. The counterfactual
framework is connected with the calculation of interventions, i.e., assessing the
change of output variables after a hypothetical change of an input variable. In
counterfactuals, we ask which inputs need to change to observe a change in the
output, while in intervention, we change the inputs to see the change in the
output. The counterfactuals were introduced into Bayesian networks by Pearl
[21]. Nowadays, their usage is broad, and they find usage in explainable machine
learning models [18].

Granger Causality The goal of the Granger Causality [10] is to detect a
causal effect of a time series on another time series. The Granger causality
measures correlations between the effect series and shifted cause series, thus
detecting a lag that represents the time needed for the cause to take shape. The
method uses various statistical tests to detect whether adding a cause into a
predictive model significantly improves the prediction capabilities of the model.
The original paper [10] used linear regression as the testing predictor. Further
modifications of the original paper followed and included non-linearity [37],
learning from multiple time series [5], applications on spectral data, i.e., in the
frequency domain [13], model-free modifications [7], and nonstationarity [32].

Instrumental Variables Instrumental variables can be used to infer causal
effects when we cannot control the experimental setting. Suppose that we want
to assess the causal effect of the explanatory variable E on the dependent variable
D. Normally, we would try to do statistical tests on whether variable D changes
when E changes. However, in many applications in medicine, economics, and
others, this is not possible, as both E and D can have a common cause and be,
therefore, correlated. This introduces bias in many statistical tests. To overcome
the issue, we include a third variable, instrument variable I, which we can control
and which has influence on D only through E. Then, we observe changes of D
on I. When the applied predictor is linear regression, the predictor is a special
case of a linear dynamic system [34]. The existence of a hidden state then allows
the removal of the correlations stemming from a common, unobserved cause [34].

Instrumental variables are, however, concepts that can be used well beyond
linear regression. Non-linear [22] and non-smooth [3] modifications exist. Some-
times, there is a requirement that instrumental variables might have common
cofounders. This multilevel modeling is implemented in the instrumental variable
toolkit by [15]. Similarly, [9] allows for a latent (hidden) variable.

Tractable Probabilistic Models The tractable probabilistic models (TPMs)
are a large group of methods that can be used to model probabilistic distributions
compactly in the spirit of neural networks approximating functions. A prime
example of TPMs is sum-product networks (SPNs) [29], which represent the
probability distribution as a DAG, where “input” random variables are assigned
to leaves. Each non-leaf node corresponds to one of two operations, either sum
or product. The weights of the edges are then used to learn the probability
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distribution. The original paper [29] also proposed an algorithm to learn the
structure using backpropagation and expectation maximization. The SPNs are
only a subgroup in the broad class of probabilistic circuits [6]. The unified
formalism allows using different types of nodes besides the sum and product
nodes. Dynamic versions [17, e.g.] are able to work with temporal data.

See also Table 1 in the next section for an overview.

3 The Challenge
As suggested in the Introduction, we would like to learn causal models that are
more expressive than many traditional models. In our view, the expressivity of
the causal model entails:

• quantitative aspects of causality, also in order to simulate from the causal
model

• non-linear aspects of causality

• hidden states (latent variables) of an a priori unknown dimension.

• At the same time, one would like to preserve as much explainability as
possible, perhaps through targeted reduction [14].

• cycles in causal relationships

• time-series aspects, such as nonanticipativity and delays: clearly, causal
relationships should be established between the cause in the past and the
effect in the future, with some delay between the two.

• mixture-model aspects: clearly, there are variations between the metabolism
in various individuals, perhaps due to genomic differences. One should
explore joint problems [23], where multiple causal models are learned with-
out the assignment of individuals to subgroups represented by the causal
models given a priori.

The ability to simulate from the model entails:

• quantitative aspects of causality, in order to simulate from the causal
model

• time required to simulate from the model scaling modestly (with the
number of random variables and numbers of samples).

The ability to learn the model entails:

• sample complexity: number of samples required to build the model.
Even simple models such as HMM comprise learning Gaussian mixture
models, which are known to have high sample complexity.
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Causal Bayesian networks X X X 71 X X X 7 X 7 X
Structural Equation Modeling X X X X X X X 7 - - -
Counterfactual Framework X X X X2 X X X 73 - - -
Granger Causality X X 7 7 X 7 X X4 -5 - -
Bayesian Structural Time Series Models X X X X X X X 76 - - -
Instrumental Variables X X X 7 X X X 7 - - -
Tractable Probabilistic Models X 7 7 7 X7 X X 7 (X) (X) (X)

Table 1: Summary of features of selected methods and frameworks.

• time complexity: time required to learn the model. Again, even HMM
are [2, 16] cryptographically hard to learn in the setting where one has
access to i.i.d. samples of observation sequences.

Let us discuss some of these in more detail.

Cycles Standard Bayesian networks do not normally support cycles between
the variables. The causal relationships need to form a directed acyclic graph
(DAG). Likewise, Granger causality does not support cyclic dependencies by
definition. The Granger causality aims to find out whether one variable can be
helpful in predicting the future of a second variable. As a result, we are detecting
some time lag, that the second variable correlated with the first variable shifted
to the future. To obtain a cyclic relationship, we would need a sequence of
positive time lags that sum together to zero, which is not possible.

Under some circumstances, we can model cyclical relationships with Dynamic
Bayesian networks (DBNs). For each variable, we have its realizations for time
t = 1, 2, . . . , T . As a result, DBNs can then be used to model situations, such
as the one when Xt causes Yt+1, Yt+1 causes Zt+2, which in turn causes Xt+3.
The overall graph is still a DAG, as there cannot be a cycle within a one-time
slice, and neither can a variable have an effect on the past.

Hidden state and Mixture-models Modeling a hidden state in the model
and sampling from the mixture of models are tightly connected, as the second
can be reduced to the first. Suppose that we want to model a mixture of two
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distributions. We can build two separate models for each of the distributions.
Then, we introduce a hidden state that models a binary decision, whether we
sample from the first or the second distribution.

Model learning When we are interested in the time complexity of model
learning, the time requirements differ based on the techniques used. The Bayesian
networks do not generally have exact polynomial-time learning. In Granger
causality, the complexity of mining causal relationships depends on the algo-
rithms and methods used. In the simplest scenarios, we can base the causal
relationships on the F-test, which can be calculated in linear time, assuming
that the cumulative distribution function of the Fisher–Snedecor distribution
(F-distribution) is precomputed.

Non-linear dependencies In many cases, the possibility of having non-linear
models is part of extensions of the original methods. A prominent example of
such a method is Granger’s causality. The original method was developed with
linear dependencies between the features. But further extensions were developed
to include nonlinearities, for example, [37]. In Bayesian networks, the original
version [26] considered only propositional variables, but subsequent versions [12,
e.g.] considered also continuous variables and non-linear dependencies.

4 The Benchmark
As the causal learning community matures, one would like to learn models that
are more expressive (see above) and to learn them from datasets that go beyond
toy examples.

In this paper, we present a simulated dataset based on the Krebs cycle.
The Krebs cycle, also known as the citric acid cycle, is one of the fundamental
pathways of biochemistry. The cycle, as illustrated in Figure 1, allows organisms
that breathe to convert the energy stored in food to a key energy source (ATP)
in muscle cells, for example. Such a cycle presents a natural example of time
series that can be used to infer causal relationships between concentrations of
the reactants.

4.1 The Data
Depending on the modeling of the time series, each of the reactions can be
represented by one or more causal relationships. Our benchmark is based on
a simulator in the GitHub repository at [20]. The simulator creates a virtual
box with desired particles. The particles move inside the box, following the
Boltzmann distribution. Once particles get close to each other, a pre-defined list
of reactions is scanned to determine whether a reaction occurs, and if so, reactants
are replaced with a product. The simulation continues, and concentrations of
different particles are used as test time series. As a result, the time series contains
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Cis-aconitate

H2O
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GDP + H2O

GTP

Furmate

FAD

Malate

H2O

Oxaloacetate

NADNADH

H2O, Acetyl-coa

Figure 1: Illustration of the Kreb’s cycle reactions used to simulate the concen-
trations.

noise (caused by the random location of particles), which is added to the locally
linear behavior of the system.

In this way, we have generated four datasets, consisting of a time series with
5 to 5000 time steps and 16 features for the reactants, including 10 in the main
cycle and 6 additional ones (incl. water). Each of the following datasets is based
on simulating approximately 2500 molecules in the bounding box:

KrebsN contains 100 series with normally distributed prior distributions and abso-
lute concentrations.

Krebs3 contains 120 series with relative concentrations, where for each triplet of
the 10 main cycle reactants, we used uniform priors, and the remaining
7 particles were set to zero. Such a distribution is motivated by allowing
the tested approaches to trace how the higher concentration of the three
selected compounds move forward in the cycle.

KrebsL focuses on learning from a few long time series. In this case, we have 10
series with 5000 time steps. We use

KrebsS considers 10000 time series with only 5 time steps each, a complementary
scenario to KrebsL.

The datasets are summarized in Table 2, showing the dimensions of the time
series, the number of molecules used in the simulation, as well as other important
features of the data.
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Dataset N. features Lenght N. series Initialization Concentrations
KrebsN 16 500 100 Normal distribution Absolute
Krebs3 16 500 120 Excitation of three Relative
KrebsL 16 5000 10 Normal distribution Absolute
KrebsS 16 5 10000 Normal distribution Absolute

Table 2: Summary of the datasets in the Krebs cycle.

4.2 Evaluation Criteria
For comparison, the dataset includes the ground-truth causal matrix as defined
by the equations. Also, please note diagonal in Fig. 2a, which is there as well
because the presence of a substance at time t implies presence of the same
substance at time t+ 1. A single run of an algorithm produces a causal matrix
that can be compared to the ground truth one. One of the simplest measures to
compare the matrices is the structural hamming distance (SDH), that counts the
number of edges that need to be added and the number of edges that need to
be removed to convert the predicted causal graph into the ground-truth causal
graph.

We propose as the main measure of the quality of the causal matrix to use the
F1-score, which is the harmonic mean of the precision and recall measures. Let
TP, TN, FP, FN be the true/false positive/negative measures as in a classification
task. Then, the F1-score is defined

F1 = 2 · precision · recall
precision + recall

, (4)

precision =
TP

TP + FP
, (5)

recall =
TP

TP + FN
. (6)

Please note, that this measure can be easily extended to the case when
the predicted causal matrix is stochastic. In that case, for example, an edge
predicted with weight 0.3 when there is no ground-truth edge, contributes 0.3 to
false-positive and 0.7 to true-negative.

To assess the stability of the method, we recommend to average the results
over at least 10 runs of the method, whenever the tested method is randomized.
The standard mean should then be calculated. In the case of deterministic
methods, the stability of the F1-score cannot be evaluated by simple repeated
evaluations followed by standard deviation calculation. Therefore, we recommend
using an approach similar to cross-validation to show the stability of the results.
In each evaluation, instead of plain restart, we can keep 10% of the dataset
aside to randomize data instead of the method. As a result, by doing repeated
evaluations, it is possible to obtain the results’ standard deviations and confidence
intervals.
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(a) Ground-truth (b) DyNoTears on KrebsN (c) DyNoTears on Krebs3

Figure 2: An illustration of the adjacency matrix produced by various methods
and the ground truth matrix representing the set of reactions. Black squares
represent 1 an edge in the adjacency matrix, grey 0.

4.3 A Baseline
To illustrate the dataset, we include results of the DyNoTears [25], a state-of-
the-art method for causal discovery, implemented in the CausalNex [1] pack-
age. DyNoTears is provided with information that forbids edges within the
same time slice, and the regularization parameter �a is selected from the list
10�6

, 10�5
, . . . , 106, so that the maximum F1-score is reached. Besides the F1

score, we also measured the time needed for structure learning. Figure 2 shows
the adjacency matrix for various methods. We can see that as the F1-score is
low, both datasets are challenging for causal discovery.

Figure 3 shows how the F1-score improves with the number of time series
included in the evaluation. Similarly, Fig. 4 shows how the time requirements of
the methods change with the number of time series.

From the results, we can see that the dataset is a major challenge for
state-of-the-art identification methods, considering their F1-score is close to 0.5.
Therefore, there is room for methods to improve the results further.

5 Discussion
Once the dataset is presented, we are ready to compare it with other existing
possibilities and show how it improves upon the other choices in [25, 11, 4]. We
will point out the important advantages that the Krebs dataset has against other
datasets.

Our method does not assume any ground truth structural model.
Instead, our method uses an independent method of simulation from a real-world
setting. The dataset is generated by following the chemical reactions in the Krebs
cycle. This makes it possible to generate multiple variants (KrebsN, Krebs3,
KrebsS, KrebsS ) consistently. These consist of a time series with 5 to 5000 time
steps and 16 features for the reactants, including 10 in the main cycle and 6
additional ones (incl. water).
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(a) KrebsN (b) Krebs3

Figure 3: An illustration of the F1-score of various methods on the Krebs dataset.
Please note that the implementation of DyNoTears in CausalNex is deterministic,
thus providing the same result each time. To calculate the error bars, randomly
selected 10% of the data were put aside, and then results were averaged over 10
repeats of this procedure.

(a) KrebsN (b) Krebs3

Figure 4: An illustration of the time requirements of various methods on the
Krebs dataset. The error bars show the standard deviation of the measurements
calculated from 10 repeats.
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Dataset R
2-sortability Standard variance Note

krebsN 0.486 0.008
krebs3 0.501 0.011
krebsS 0.497 0.035 (please, see caption)
krebsL 0.492 0.005

Table 3: The evaluation of R2-sortability for individual time series. For each
of the time series in each dataset, we calculated the R

2-sortability using the
CausalDisco Python package [30, 31]. To obtain the results, the R

2-sortability
values were then averaged over each of the datasets. Please note that for 11
time series in the krebsS dataset, the R

2-sortability method did not produce a
numeric result. Since this is much less than 1% of the dataset (and R

2-sortability
is bounded by 0 and 1), the average won’t be influenced substantially.

The presented dataset is not R2-sortable. Our method does not suffer from
the R

2-sortability issues other synthetic benchmarks suffer from, as explained
by [24] and [31]. Indeed, Ormaniec et al. [24] argue that there are usually
patterns left by the simulation from structural models that are easy to exploit.
This can be quantified by the R

2-sortability [31]. To illustrate how the Krebs
dataset stands compared to the R

2-sortability, we implemented a code evaluating
the R

2-sortability for our dataset, the results of which can be seen in Table 3.
Reference [31] then explains that “0.5 means that ordering the variables by R

2

amounts to a random guess of the causal ordering”, meaning that our dataset is
not R2-sortable. Thus, the fact that we do not assume any underlying framework
makes our dataset more universal.

The ground truth causal relationships are known. At the same time,
our method comes with widely accepted ground-truth data. The advantage can
be seen when compared to datasets such as S&P100 (stock returns for 100 top
US companies), used in DyNoTears paper [25]. S&P100 is a real-world dataset
that suffers from an unclear ground truth causal matrix. Moreover, the authors
had to ensure that the data were stationary, as concept drift is likely to happen
in stock trading.

A similar situation is connected with the SACHS dataset [4]. This dataset
contains single-cell measurements of levels of 11 proteins in immune cells. With
853 samples, the dataset is of a similar size to ours. However, we cannot be sure
what the true causal relationships between the variables representing individual
genes are in the case of expression data.

Prospect of perfect reconstruction At the same time, our method allows
for the prospect of perfect reconstruction. Our dataset is much smaller than
another commonly used causality dataset, the DREAM dataset [11]. This
is desirable in connection with the fact that most of the problems in causal
learning are NP-hard. Because of that, perfect recovery with many variables
is computationally infeasible. Causal discovery algorithms should be tested on
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smaller, easy-to-explain datasets first before proceeding to larger and more
complex datasets. The use of larger datasets also brings another reproducibility
problem – sampling, often done in an ad hoc, paper-specific fashion – which is
not needed with our data.

6 Conclusion
We publish all source files used to generate the data and the figures in this
paper in the following GitHub repository https://github.com/petrrysavy/

krebsdynotears. The repository also contains numeric results that were gen-
erated as input to the plots. The generator of the data can be found at
https://github.com/petrrysavy/krebsgenerator, including a description of
how to generate the benchmarking data. The generator is based on a simula-
tor at [20]. The dataset is available at https://huggingface.co/datasets/

petrrysavy/krebs/tree/main.

References
[1] Paul Beaumont, Ben Horsburgh, Philip Pilgerstorfer, Angel Droth, Richard

Oentaryo, Steven Ler, Hiep Nguyen, Gabriel Azevedo Ferreira, Zain Patel,
and Wesley Leong. CausalNex, October 2021.

[2] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J Lipton. Crypto-
graphic primitives based on hard learning problems. In Annual International

Cryptology Conference, pages 278–291. Springer, 1993.

[3] Mehmet Caner and Bruce E Hansen. Instrumental variable estimation of a
threshold model. Econometric theory, 20(5):813–843, 2004.

[4] Bertrand Charpentier, Simon Kibler, and Stephan Günnemann. Differen-
tiable DAG sampling. In International Conference on Learning Representa-

tions, 2022.

[5] Yonghong Chen, Govindan Rangarajan, Jianfeng Feng, and Mingzhou Ding.
Analyzing multiple nonlinear time series with extended granger causality.
Physics Letters A, 324(1):26–35, 2004.

[6] Y Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits:
A unifying framework for tractable probabilistic models. UCLA. URL:

http://starai. cs. ucla. edu/papers/ProbCirc20. pdf, page 6, 2020.

[7] Richard A Davis, Pengfei Zang, and Tian Zheng. Sparse vector autore-
gressive modeling. Journal of Computational and Graphical Statistics,
25(4):1077–1096, 2016.

[8] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence
and causation. Computational Intelligence, 5(2):142–150, 1989.

13



[9] Peter Ebbes, Michel Wedel, Ulf Böckenholt, and Ton Steerneman. Solv-
ing and testing for regressor-error (in) dependence when no instrumental
variables are available: With new evidence for the effect of education on
income. Quantitative Marketing and Economics, 3:365–392, 2005.

[10] C. W. J. Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37(3):424–438, 1969.

[11] Alex Greenfield, Aviv Madar, Harry Ostrer, and Richard Bonneau. Dream4:
Combining genetic and dynamic information to identify biological networks
and dynamical models. PLoS ONE, 5, 2010.

[12] Reimar Hofmann and Volker Tresp. Discovering structure in continuous vari-
ables using bayesian networks. In Proceedings of the 8th International Con-

ference on Neural Information Processing Systems, NIPS’95, page 500–506,
Cambridge, MA, USA, 1995. MIT Press.

[13] Maciej Kamiński, Mingzhou Ding, Wilson A. Truccolo, and Steven L.
Bressler. Evaluating causal relations in neural systems: Granger causal-
ity, directed transfer function and statistical assessment of significance.
Biological Cybernetics, 85(2):145–157, Aug 2001.

[14] Armin Kekić, Bernhard Schölkopf, and Michel Besserve. Targeted reduction
of causal models. arXiv preprint arXiv:2311.18639, 2023.

[15] Jee-Seon Kim and Edward W. Frees. Multilevel modeling with correlated
effects. Psychometrika, 72(4):505–533, Dec 2007.

[16] Gaurav Mahajan, Sham Kakade, Akshay Krishnamurthy, and Cyril Zhang.
Learning hidden markov models using conditional samples. In The Thirty

Sixth Annual Conference on Learning Theory, pages 2014–2066. PMLR,
2023.

[17] Mazen Melibari, Pascal Poupart, Prashant Doshi, and George Trimponias.
Dynamic sum product networks for tractable inference on sequence data. In
Conference on Probabilistic Graphical Models, pages 345–355. PMLR, 2016.

[18] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining
machine learning classifiers through diverse counterfactual explanations. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-

parency, FAT* ’20, page 607–617, New York, NY, USA, 2020. Association
for Computing Machinery.

[19] Kevin Patrick Murphy. Dynamic bayesian networks: representation, infer-

ence and learning. University of California, Berkeley, 2002.

[20] August Nagro. Chemistry-engine. https://github.com/AugustNagro/

Chemistry-Engine, 2015.

14



[21] Leland Gerson Neuberg. Causality: Models, reasoning, and inference,
by judea pearl, cambridge university press, 2000. Econometric Theory,
19(4):675–685, 2003.

[22] Whitney K. Newey. Efficient instrumental variables estimation of nonlinear
models. Econometrica, 58(4):809–837, 1990.

[23] Mengjia Niu, Xiaoyu He, Petr Rysavy, Quan Zhou, and Jakub Marecek.
Joint problems in learning multiple dynamical systems. arXiv preprint

arXiv:2311.02181, 2023.

[24] Weronika Ormaniec, Scott Sussex, Lars Lorch, Bernhard Schölkopf, and
Andreas Krause. Standardizing structural causal models, 2024.

[25] Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilger-
storfer, Konstantinos Georgatzis, Paul Beaumont, and Bryon Aragam.
Dynotears: Structure learning from time-series data. In International Con-

ference on Artificial Intelligence and Statistics, pages 1595–1605. Pmlr,
2020.

[26] Judea Pearl. Bayesian netwcrks: A model cf self-activated memory for
evidential reasoning. In Proceedings of the 7th conference of the Cognitive

Science Society, University of California, Irvine, CA, USA, pages 15–17,
1985.

[27] Judea Pearl. Chapter 2 - bayesian inference. In Judea Pearl, editor, Proba-

bilistic Reasoning in Intelligent Systems, pages 29–75. Morgan Kaufmann,
San Francisco (CA), 1988.

[28] Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal

inference: foundations and learning algorithms. The MIT Press, 2017.

[29] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep
architecture. In 2011 IEEE International Conference on Computer Vision

Workshops (ICCV Workshops), pages 689–690. IEEE, 2011.

[30] Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of
the simulated dag! causal discovery benchmarks may be easy to game. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 27772–27784. Curran Associates, Inc., 2021.

[31] Alexander G. Reisach, Myriam Tami, Christof Seiler, Antoine Chambaz,
and Sebastian Weichwald. A scale-invariant sorting criterion to find a causal
order in additive noise models. In Proceedings of the 37th International

Conference on Neural Information Processing Systems, NIPS ’23, Red Hook,
NY, USA, 2024. Curran Associates Inc.

15



[32] Ali Shojaie and George Michailidis. Discovering graphical Granger causality
using the truncating lasso penalty. Bioinformatics, 26(18):i517–i523, 09
2010.

[33] Anastasios Tsiamis, Ingvar Ziemann, Nikolai Matni, and George J Pappas.
Statistical learning theory for control: A finite-sample perspective. IEEE

Control Systems Magazine, 43(6):67–97, 2023.

[34] Arun Venkatraman, Wen Sun, Martial Hebert, J. Bagnell, and Byron Boots.
Online instrumental variable regression with applications to online linear
system identification. Proceedings of the AAAI Conference on Artificial

Intelligence, 30(1), Mar. 2016.

[35] Mike West and Jeff Harrison. Bayesian forecasting and dynamic models.
Springer Science & Business Media, 2006.

[36] Jan C Willems, Paolo Rapisarda, Ivan Markovsky, and Bart LM De Moor. A
note on persistency of excitation. Systems & Control Letters, 54(4):325–329,
2005.

[37] Axel Wismüller, Adora M. Dsouza, M. Ali Vosoughi, and Anas Abidin.
Large-scale nonlinear granger causality for inferring directed dependence
from short multivariate time-series data. Scientific Reports, 11(1):7817, Apr
2021.

16



References
[1] Marcus Kaiser and Maksim Sipos. Unsuitability of notears for causal graph discovery when dealing with dimensional

quantities. Neural Processing Letters, 54(3):1587–1595, 2022.

[2] Vikram Krishnamurthy. Partially observed Markov decision processes. Cambridge university press, 2016.

[3] Sabina Leanti La Rosa, Maria Louise Leth, Leszek Michalak, Morten Ejby Hansen, Nicholas A. Pudlo, Robert
Glowacki, Gabriel Pereira, Christopher T. Workman, Magnus Ø. Arntzen, Phillip B. Pope, Eric C. Martens,
Maher Abou Hachem, and Bjørge Westereng. The human gut �rmicute roseburia intestinalis is a primary
degrader of dietary �-mannans. Nature Communications, 10(1):905, Feb 2019.

[4] Roxana Pam�l, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Georgatzis, Paul
Beaumont, and Bryon Aragam. Dynotears: Structure learning from time-series data. In International Conference

on Arti�cial Intelligence and Statistics, pages 1595–1605. Pmlr, 2020.

[5] John Van der Hoek and Robert J Elliott. Introduction to Hidden Semi-Markov Models, volume 445. Cambridge
University Press, 2018.

101


	Executive Summary
	Dynamic Bayesian Networks
	Introduction
	Dynamic Bayesian Networks
	Modeling and Inference
	Learning

	Code Package

	PGMs and CoDiet
	Description of the Data
	Formal Representations
	Considerations for Modeling


